Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 15(1): 111, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27317316

RESUMO

BACKGROUND: Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. RESULTS: Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h(-1) to below 0.001 h(-1), while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)(-1) h(-1), which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements revealed that cultures retained a high metabolic capacity. CONCLUSIONS: This study provides the most accurate estimation yet of the maintenance-energy coefficient in aerobic cultures of S. cerevisiae, which is a key parameter for modelling of industrial aerobic, glucose-limited fed-batch processes. The observed extreme heat-shock tolerance and high metabolic capacity at near-zero growth rates demonstrate the intrinsic potential of S. cerevisiae as a robust, non-dividing microbial cell factory for energy-intensive products.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Biomassa , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicólise , Saccharomyces cerevisiae/metabolismo , Temperatura , Transcriptoma
2.
Appl Environ Microbiol ; 82(15): 4570-4583, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208115

RESUMO

UNLABELLED: The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX /S (max)) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (µ) of 0.025 h(-1) to near-zero specific growth rates (µ < 0.001 h(-1)). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low µ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while µ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE: The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than baker's yeast.


Assuntos
Metabolismo Energético , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Cinética , Metanol/metabolismo , Pichia/química , Pichia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/metabolismo
3.
Microb Cell Fact ; 14: 133, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26369953

RESUMO

INTRODUCTION: Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic, sugar-limited fed-batch reactors which, due to constraints in oxygen transfer and cooling capacities, have to be operated at low specific growth rates. Because intracellular levels of key metabolites are growth-rate dependent, slow growth can significantly affect biomass-specific productivity. Using an engineered Saccharomyces cerevisiae strain expressing a heterologous pathway for resveratrol production as a model energy-requiring product, the impact of specific growth rate on yeast physiology and productivity was investigated in aerobic, glucose-limited chemostat cultures. RESULTS: Stoichiometric analysis revealed that de novo resveratrol production from glucose requires 13 moles of ATP per mole of produced resveratrol. The biomass-specific production rate of resveratrol showed a strong positive correlation with the specific growth rate. At low growth rates a substantial fraction of the carbon source was invested in cellular maintenance-energy requirements (e.g. 27 % at 0.03 h(-1)). This distribution of resources was unaffected by resveratrol production. Formation of the by-products coumaric, phloretic and cinnamic acid had no detectable effect on maintenance energy requirement and yeast physiology in chemostat. Expression of the heterologous pathway led to marked differences in transcript levels in the resveratrol-producing strain, including increased expression levels of genes involved in pathways for precursor supply (e.g. ARO7 and ARO9 involved in phenylalanine biosynthesis). The observed strong differential expression of many glucose-responsive genes in the resveratrol producer as compared to a congenic reference strain could be explained from higher residual glucose concentrations and higher relative growth rates in cultures of the resveratrol producer. CONCLUSIONS: De novo resveratrol production by engineered S. cerevisiae is an energy demanding process. Resveratrol production by an engineered strain exhibited a strong correlation with specific growth rate. Since industrial production in fed-batch reactors typically involves low specific growth rates, this study emphasizes the need for uncoupling growth and product formation via energy-requiring pathways.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Estilbenos/metabolismo , Biomassa , Reatores Biológicos , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , RNA Mensageiro/metabolismo , Resveratrol , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Microb Cell ; 2(11): 429-444, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-28357268

RESUMO

Stationary-phase (SP) batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.

5.
FEMS Yeast Res ; 13(8): 769-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028550

RESUMO

In vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S. cerevisiae. Combined assembly and targeted integration of a ten-fragment 22-kb construct to a single chromosomal locus was successfully achieved in a single transformation process, but with low efficiency (5% of the analyzed transformants contained the correctly assembled construct). The meganuclease I-SceI was therefore used to introduce a double-strand break at the targeted chromosomal locus, thus to facilitate integration of the assembled construct. I-SceI-assisted integration dramatically increased the efficiency of assembly and integration of the same construct to 95%. This study paves the way for the fast, efficient, and stable integration of large DNA constructs in S. cerevisiae chromosomes.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcação de Genes , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , GTP Fosfo-Hidrolases/genética , Ordem dos Genes , Glicólise/genética , Mutagênese Insercional , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética
6.
J Immunol ; 185(3): 1442-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610648

RESUMO

The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Diferenciação Celular/imunologia , Mediadores da Inflamação/fisiologia , Macrófagos/imunologia , Macrófagos/patologia , Sequência de Aminoácidos , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Infecções Bacterianas/prevenção & controle , Células Cultivadas , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/prevenção & controle , Interleucina-10/antagonistas & inibidores , Interleucina-10/biossíntese , Fator Estimulador de Colônias de Macrófagos/fisiologia , Macrófagos/classificação , Dados de Sequência Molecular , Monócitos/citologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...