Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 2(12): e1362, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18159245

RESUMO

Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.


Assuntos
Ventrículos do Coração/metabolismo , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Cromossomos Humanos Par 14 , Feminino , Ligação Genética , Ventrículos do Coração/patologia , Humanos , Masculino , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Homologia de Sequência de Aminoácidos
3.
Eur Heart J ; 24(20): 1848-53, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14563344

RESUMO

AIMS: Hypertrophic cardiomyopathy (HCM) is caused by mutations in genes that encode sarcomeric proteins. In this study we investigated the involvement of the sarcomeric myosin binding protein C in the Dutch HCM population. METHODS AND RESULTS: We initially screened 22 Dutch index patients for mutations in the MYBPC3 gene, which revealed four different mutations in 14 patients. The 2373insG mutation was identified in 10 apparently unrelated patients. A subsequent screening for the 2373insG mutation in a group of another 237 unrelated HCM patients revealed 50 additional carriers of the same genetic defect. Genotyping with polymorphic repeat markers and intragenic SNPs of the 60 Dutch as well as two German and five North American 2373insG carriers indicated they all share the same haplotype. CONCLUSION: The 2373insG mutation accounts for almost one-fourth of all HCM cases in the Netherlands (60/259), which is predominantly present in the northwestern part of the country (22/66) and is a founder mutation probably originating from the Netherlands.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Proteínas de Transporte/genética , Efeito Fundador , Mutação de Sentido Incorreto/genética , Feminino , Genótipo , Humanos , Masculino , Países Baixos , Linhagem
4.
J Mol Cell Cardiol ; 35(6): 623-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788380

RESUMO

Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod. In two other families (HH and NP, related by a common founder) a 2-bp loss in codon 453 (exon 16) of MYBPC3 was identified as the presumable cause of a translation reading frame shift. Taken together 15 living mutation carriers were investigated. Six deceased family members (with five cases of premature sudden cardiac death (SCD) in families MM and NP) were either obligate or suspected mutation carriers. In addition to these mutations a 25-bp deletion in intron 32 of MYBPC3 was identified in family MM (five carriers) and in a fourth family (MiR, one HCM patient, three deletion carriers). In agreement with the loss of the regular splicing branch point in the altered intron 32, a splicing deficiency was observed in an exon trapping experiment using MYBPC3 exon 33 as a test substrate. Varying disease profiles assessed using standard clinical, ECG and echocardiographic procedures in conjunction with mutation analysis led to the following conclusions: (1) In family MM the DeltaE927 deletion in MYH7 was assumed to be associated with complete penetrance. Two cases of reported SCD might have been related to this mutation. (2) The two families, HH and NP, distantly related by a common founder, and both suffering from a 2-bp deletion in exon 16 of MYBPC3 differed in their average phenotypes. In family NP, four cases of cardiac death were documented, whereas no cardiac-related death was reported from family HH. These results support the notion that mutations in HCM genes may directly determine disease penetrance and severity; however, a contribution of additional, unidentified factors (genes) to the HCM phenotype can-at least in some cases-not be excluded. (3) The deletion in intron 32 of MYBPC3 was seen in two families, but in both its relation to disease was not unequivocal. In addition, this deletion was observed in 16 of 229 unrelated healthy individuals of the population of the South Indian states of Kerala and Tamil Nadu. It was not seen in 270 Caucasians from Russia and western Europe. Hence, it is considered to represent a regional genetic polymorphism restricted to southern India. The association of the deletion with altered splicing in transfected cells suggests that this deletion may create a "modifying gene", which is per se not or only rarely causing HCM, but which may enhance the phenotype of a mutation responsible for disease.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Proteínas de Transporte/genética , Deleção de Genes , Miosinas Ventriculares/genética , Adolescente , Adulto , Animais , Criança , Análise Mutacional de DNA , Ecocardiografia , Éxons , Saúde da Família , Feminino , Heterozigoto , Humanos , Índia , Íntrons , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Polimorfismo Genético , Splicing de RNA
5.
Hum Mutat ; 19(5): 560-9, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11968089

RESUMO

Familial hypertrophic cardiomyopathy (HCM or CMH) is a myocardial disorder caused by mutations that affect the contractile machinery of heart muscle cells. Genetic testing of HCM patients is hampered by the fact that mutations in at least eight different genes contribute to the disease. An affordable high-throughput mutation detection method is as yet not available. Since a significant number of mutations have been repeatedly found in unrelated families, we consider it feasible to pre-screen patients for known mutations, before more laborious techniques capable of detecting new mutations are applied. Here we demonstrate that the principle of hybridization of DNA to oligonucleotide probes immobilized on chips (glass slides) can be applied for this purpose. We have developed a low-density oligonucleotide probe array capable of detecting 12 different heterozygous mutations (in four different genes), among them single- and double-base exchanges, a single nucleotide insertion, and a trinucleotide deletion. The assay is simple and may be amenable to automation. Detection is achieved with a CCD camera-based fluorescence biochip reader. The technique turned out to be robust: Variations in either the relative position of a mutation, or the amount and size of target-DNA were compatible with mutation detection. Mutations could even be detected in amplicons as long as 800 bp, allowing the screening of more than one exon in one amplicon. Our data suggest that the development of a chip that covers all or most of known HCM-associated mutations is feasible and useful.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , DNA/genética , Testes Genéticos/métodos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cardiomiopatia Hipertrófica Familiar/metabolismo , Proteínas de Transporte/genética , DNA/análise , Humanos , Cadeias Pesadas de Miosina/genética , Miosinas/metabolismo , Tropomiosina/genética , Troponina T/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-11714407

RESUMO

Hypertrophic cardiomyopathy (HCM) is a dominant genetic disorder of the myocardium associated with dysfunctional contractile proteins. The major risk of HCM is sudden cardiac death, which may occur even in asymptomatic carriers. Causes are highly heterogeneous. Over 140 different mutations in nine sarcomeric genes have been described to date. The majority of cases (80% or more) may eventually be traced to one of these genes. Although genetic counselling is suggested even if mutations are not known, molecular diagnosis implies new options such as carrier identification or - theoretically - preclinical risk stratification. A scheme according to which cardiologists and clinical and molecular geneticists could cooperate in counselling patients and managing HCM clinically is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...