Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(12): 7495-7512, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201140

RESUMO

Disruptions of brain energy and neurotransmitter metabolism are associated with several pathological conditions including neurodegenerative diseases such as Alzheimer's disease. Transgenic rodent models, and in vitro preparations hereof, are often applied for studying pathological aspects of brain metabolism. However, despite the conserved cerebral development across mammalian species, distinct differences in cellular composition and structure may influence metabolism of the rodent and human brain. To address this, we investigated the metabolic function of acutely isolated brain slices and non-synaptic mitochondria obtained from the cerebral cortex of mice and neurosurgically resected neocortical tissue of humans. Utilizing dynamic isotope labeling with 13C-enriched metabolic substrates, we show that metabolism of glucose, acetate, ß-hydroxybutyrate, and glutamine operates at lower rates in human cerebral cortical slices when compared to mouse slices. In contrast, human cerebral cortical slices display a higher capacity for converting exogenous glutamate into glutamine, which subsequently supports neuronal GABA synthesis, whereas mouse slices primarily convert glutamate into aspartate. In line with the reduced metabolic rate of the human brain slices, isolated non-synaptic mitochondria of the human cerebral cortex have a lower oxygen consumption rate when provided succinate as substrate. However, when provided pyruvate and malate, human mitochondria display a higher coupled respiration and lower proton leak, signifying a more efficient mitochondrial coupling compared to mouse mitochondria. This study reveals key differences between mouse and human brain metabolism concerning both neurons and astrocytes, which must be taken into account when applying in vitro rodent preparations as a model system of the human brain.


Assuntos
Ácido Glutâmico , Glutamina , Animais , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Glucose/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
2.
Front Neurosci ; 15: 646291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220417

RESUMO

Impaired liver function may lead to hyperammonemia and risk for hepatic encephalopathy. In brain, detoxification of ammonia is mediated mainly by glutamine synthetase (GS) in astrocytes. This requires a continuous de novo synthesis of glutamate, likely involving the action of both pyruvate carboxylase (PC) and glutamate dehydrogenase (GDH). An increased PC activity upon ammonia exposure and the importance of PC activity for glutamine synthesis has previously been demonstrated while the importance of GDH for generation of glutamate as precursor for glutamine synthesis has received little attention. We therefore investigated the functional importance of GDH for brain metabolism during hyperammonemia. To this end, brain slices were acutely isolated from transgenic CNS-specific GDH null or litter mate control mice and incubated in aCSF containing [U-13C]glucose in the absence or presence of 1 or 5 mM ammonia. In another set of experiments, brain slices were incubated in aCSF containing 1 or 5 mM 15N-labeled NH4Cl and 5 mM unlabeled glucose. Tissue extracts were analyzed for isotopic labeling in metabolites and for total amounts of amino acids. As a novel finding, we reveal a central importance of GDH function for cerebral ammonia fixation and as a prerequisite for de novo synthesis of glutamate and glutamine during hyperammonemia. Moreover, we demonstrated an important role of the concerted action of GDH and alanine aminotransferase in hyperammonemia; the products alanine and α-ketoglutarate serve as an ammonia sink and as a substrate for ammonia fixation via GDH, respectively. The role of this mechanism in human hyperammonemic states remains to be studied.

3.
Glia ; 68(12): 2601-2612, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32584476

RESUMO

Synaptic transmission is closely linked to brain energy and neurotransmitter metabolism. However, the extent of brain metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and the relative metabolic contributions of neurons and astrocytes, are yet unknown. The present study was designed to investigate the functional significance of brain GABA metabolism using isolated mouse cerebral cortical slices and slices of neurosurgically resected neocortical human tissue of the temporal lobe. By using dynamic isotope labeling, with [15 N]GABA and [U-13 C]GABA as metabolic substrates, we show that both mouse and human brain slices exhibit a large capacity for GABA metabolism. Both the nitrogen and the carbon backbone of GABA strongly support glutamine synthesis, particularly in the human cerebral cortex, indicative of active astrocytic GABA metabolism. This was further substantiated by pharmacological inhibition of the primary astrocytic GABA transporter subtype 3 (GAT3), by (S)-SNAP-5114 or 1-benzyl-5-chloro-2,3-dihydro-1H-indole-2,3-dione (compound 34), leading to significant reductions in oxidative GABA carbon metabolism. Interestingly, this was not the case when tiagabine was used to specifically inhibit GAT1, which is predominantly found on neurons. Finally, we show that acute GABA exposure does not directly stimulate glycolytic activity nor oxidative metabolism in cultured astrocytes, but can be used as an additional substrate to enhance uncoupled respiration. These results clearly show that GABA is actively metabolized in astrocytes, particularly for the synthesis of glutamine, and challenge the current view that synaptic GABA homeostasis is maintained primarily by presynaptic recycling.


Assuntos
Astrócitos , Animais , Carbono , Córtex Cerebral , Ácido Glutâmico , Glutamina , Camundongos , Neurotransmissores , Ácido gama-Aminobutírico
4.
Glia ; 68(9): 1824-1839, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32092215

RESUMO

AMP-activated protein kinase (AMPK) is an important energy sensor located in cells throughout the human body. From the periphery, AMPK is known to be a metabolic master switch controlling the use of energy fuels. The energy sensor is activated when the energy status of the cell is low, initiating energy-producing pathways and deactivating energy-consuming pathways. All brain cells are crucially dependent on energy production for survival, and the availability of energy substrates must be closely regulated. Intriguingly, the role of AMPK in the regulation of brain cell metabolism has been sparsely investigated, particularly in astrocytes. By investigating metabolism of 13 C-labeled energy substrates in acutely isolated hippocampal slices and cultured astrocytes, with subsequent mass spectrometry analysis, we here show that activation of AMPK increases glycolysis as well as the capacity of the TCA cycle, that is, anaplerosis, through the activity of pyruvate carboxylase (PC) in astrocytes. In addition, we demonstrate that AMPK activation leads to augmented astrocytic glutamate oxidation via pyruvate recycling (i.e., cataplerosis). This regulatory mechanism induced by AMPK activation is mediated via glutamate dehydrogenase (GDH) shown in a CNS-specific GDH knockout mouse. Collectively, these findings demonstrate that AMPK regulates TCA cycle dynamics in astrocytes via PC and GDH activity. AMPK functionality has been shown to be hampered in Alzheimer's and Parkinson's disease and our findings may therefore add to the toolbox for discovery of new metabolic drug targets.


Assuntos
Proteínas Quinases Ativadas por AMP , Astrócitos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Astrócitos/metabolismo , Respiração Celular , Ciclo do Ácido Cítrico , Glutamato Desidrogenase , Camundongos , Estresse Oxidativo
5.
Front Mol Neurosci ; 12: 120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178690

RESUMO

The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4 + toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme's active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.

6.
Neurochem Res ; 40(12): 2431-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25846006

RESUMO

Mammalian AMP-activated protein kinase (AMPK) functions as a metabolic switch. It is composed of 3 different subunits and its activation depends on phosphorylation of a threonine residue (Thr172) in the α-subunit. This phosphorylation can be brought about by 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) which in the cells is converted to a monophosphorylated nucleotide mimicking the effect of AMP. We show that the preparation of cultured astrocytes used for metabolic studies expresses AMPK, which could be phosphorylated by exposure of the cells to AICAR. The effect of AMPK activation on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK activation. Accordingly, the effects of AMPK activation appeared to be specific for certain key processes involved in glutamate metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Glutamatos/metabolismo , Proteínas Quinases Ativadas por AMP/biossíntese , Monofosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Astrócitos/enzimologia , Células Cultivadas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Desoxiglucose/metabolismo , Ativação Enzimática/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...