Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 100(9): 904-12, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20701488

RESUMO

Gibberella zeae (anamorph: Fusarium graminearum) is the most common cause of Fusarium head blight (FHB) of wheat (Triticum aestivum) worldwide. Aggressiveness is the most important fungal trait affecting disease severity and stability of host resistance. Objectives were to analyze in two field experiments (i) segregation for aggressiveness among 120 progenies from each of two crosses of highly aggressive parents and (ii) stability of FHB resistance of seven moderately to highly resistant winter wheat cultivars against isolates varying for aggressiveness. Aggressiveness was measured as FHB severity per plot, Fusarium exoantigen absorbance, and deoxynivalenol content. In the first experiment, mean FHB ratings were 20 to 49% across environments and progeny. Significant genotypic variation was detected in both crosses (P < 0.01). Isolate-environment interaction explained approximately half of the total variance. Two transgressive segregants were found in cross B across environments. Traits were significantly (P < 0.05) intercorrelated. In the second experiment, despite significant (P < 0.05) genotypic variance for cultivar and isolate, no significant (P > 0.05) interaction was observed for any trait. In conclusion, progeny of highly aggressive parents might exhibit increased aggressiveness due to recombination and may, therefore, adapt nonspecifically to increased quantitative host resistance.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Gibberella/patogenicidade , Gibberella/genética , Triticum/microbiologia , Virulência
2.
Theor Appl Genet ; 117(7): 1119-28, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18670751

RESUMO

Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.


Assuntos
Fusarium , Doenças das Plantas/genética , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Imunidade Inata/genética , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...