Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Commun ; 15(1): 1704, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402210

RESUMO

Outcome-guided behavior requires knowledge about the identity of future rewards. Previous work across species has shown that the dopaminergic midbrain responds to violations in expected reward identity and that the lateral orbitofrontal cortex (OFC) represents reward identity expectations. Here we used network-targeted transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) during a trans-reinforcer reversal learning task to test the hypothesis that outcome expectations in the lateral OFC contribute to the computation of identity prediction errors (iPE) in the midbrain. Network-targeted TMS aiming at lateral OFC reduced the global connectedness of the lateral OFC and impaired reward identity learning in the first block of trials. Critically, TMS disrupted neural representations of expected reward identity in the OFC and modulated iPE responses in the midbrain. These results support the idea that iPE signals in the dopaminergic midbrain are computed based on outcome expectations represented in the lateral OFC.


Assuntos
Mesencéfalo , Córtex Pré-Frontal , Córtex Pré-Frontal/fisiologia , Mesencéfalo/fisiologia , Recompensa , Reversão de Aprendizagem/fisiologia , Transdução de Sinais , Imageamento por Ressonância Magnética
2.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38253540

RESUMO

Electrophysiological recording is a powerful technique to examine neuronal substrates underlying cognition and behavior. Neuropixels probes provide a unique capacity to capture neuronal activity across many brain areas with high spatiotemporal resolution. Neuropixels are also expensive and optimized for acute, head-fixed use, both of which limit the types of behaviors and manipulations that can be studied. Recent advances have addressed the cost issue by showing chronic implant, explant, and reuse of Neuropixels probes, but the methods were not optimized for use in free-moving behavior. There were specific needs for improvement in cabling/connection stability. Here, we extend that work to demonstrate chronic Neuropixels recording, explant, and reuse in a rat model during fully free-moving operant behavior. Similar to prior approaches, we house the probe and headstage within a 3D-printed housing that avoids direct fixation of the probe to the skull, enabling eventual explant. We demonstrate innovations to allow chronic headstage connection with protection against environmental factors and a more stable cabling setup to reduce the tension that can interrupt recording. We demonstrate this approach with rats performing two different behavioral tasks, in each case showing: (1) chronic single- or dual-probe recordings in free-moving rats in operant chambers and (2) reusability of Neuropixels 1.0 probes with continued good single-unit yield after retrieval and reimplant. We thus demonstrate the potential for Neuropixels recordings in a wider range of species and preparations.


Assuntos
Encéfalo , Cabeça , Animais , Ratos , Cognição
3.
Curr Biol ; 33(20): 4496-4504.e5, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37804827

RESUMO

Individuals are often faced with multiple cues that concurrently predict the same outcome, and combining these predictions may benefit behavior. Previous work has studied the neural basis of decision-making, predominantly using isolated sensory stimuli, and so the mechanisms that allow us to leverage multiple cues remain unclear. In two experiments, we used neuroimaging and network-targeted brain stimulation to probe how the brain integrates outcome predictions to guide adaptive behavior. We identified neural signatures of outcome integration in the lateral orbitofrontal cortex (OFC), where concurrently presented cues evoke stronger pattern-based representations of expected outcomes. Moreover, perturbing lateral OFC network activity impairs subjects' ability to leverage predictions from multiple cues to facilitate responding. Intriguingly, we found similar behavioral and brain mechanisms for reward-predicting cues and for cues predicting the absence of reward. These findings highlight a causal role for the lateral OFC in utilizing outcome predictions from multiple cues to guide behavior.


Assuntos
Sinais (Psicologia) , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Recompensa , Adaptação Psicológica
4.
Neuroimage ; 277: 120220, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321360

RESUMO

Episodic memory often involves high overlap between the actors, locations, and objects of everyday events. Under some circumstances, it may be beneficial to distinguish, or differentiate, neural representations of similar events to avoid interference at recall. Alternatively, forming overlapping representations of similar events, or integration, may aid recall by linking shared information between memories. It is currently unclear how the brain supports these seemingly conflicting functions of differentiation and integration. We used multivoxel pattern similarity analysis (MVPA) of fMRI data and neural-network analysis of visual similarity to examine how highly overlapping naturalistic events are encoded in patterns of cortical activity, and how the degree of differentiation versus integration at encoding affects later retrieval. Participants performed an episodic memory task in which they learned and recalled naturalistic video stimuli with high feature overlap. Visually similar videos were encoded in overlapping patterns of neural activity in temporal, parietal, and occipital regions, suggesting integration. We further found that encoding processes differentially predicted later reinstatement across the cortex. In visual processing regions in occipital cortex, greater differentiation at encoding predicted later reinstatement. Higher-level sensory processing regions in temporal and parietal lobes showed the opposite pattern, whereby highly integrated stimuli showed greater reinstatement. Moreover, integration in high-level sensory processing regions during encoding predicted greater accuracy and vividness at recall. These findings provide novel evidence that encoding-related differentiation and integration processes across the cortex have divergent effects on later recall of highly similar naturalistic events.


Assuntos
Mapeamento Encefálico , Memória Episódica , Humanos , Aprendizagem , Rememoração Mental , Encéfalo , Imageamento por Ressonância Magnética
5.
Elife ; 112022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453717

RESUMO

Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; that is, the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta-phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.

6.
Curr Res Neurobiol ; 3: 100030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518334

RESUMO

Adjacent regions of parietal cortex are thought to affiliate with distinct large-scale networks and thereby make different contributions to memory formation. We directly tested this putative functional segregation within parietal cortex by perturbing activity of anterior versus posterior parietal areas. We applied noninvasive theta-burst transcranial magnetic stimulation to these locations immediately before a semantic encoding task, and subsequently tested recollection memory. Consistent with previous findings, fMRI activity in left inferior frontal gyrus during semantic encoding correlated with subsequent high memory accuracy and strong subjective recollection. Stimulation of the posterior parietal cortex decoupled its network - the hippocampal-cortical network - from left inferior frontal gyrus. Furthermore, posterior parietal stimulation reduced highly accurate subjective recollection. Critically, both of these changes occurred relative to stimulation of the anterior parietal cortex. Stimulating anterior versus posterior parietal cortex therefore differentiated hippocampal network involvement in episodic memory. This provides direct evidence that distinct territories within close proximity of each other in parietal cortex make functionally distinct contributions to memory formation. Further, noninvasive stimulation has the spatial resolution required to differentially modulate the interaction of these adjacent parietal locations with distributed large-scale brain networks.

7.
Cereb Cortex ; 32(21): 4715-4732, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35106536

RESUMO

Classical lesion studies led to a consensus that episodic and procedural memory arises from segregated networks identified with the hippocampus and the caudate nucleus, respectively. Neuroimaging studies, however, show that competitive and cooperative interactions occur between networks during memory tasks. Furthermore, causal experiments to manipulate connectivity between these networks have not been performed in humans. Although nodes common to both networks, such as the precuneus and ventrolateral thalamus, may mediate their interaction, there is no experimental evidence for this. We tested how network-targeted noninvasive brain stimulation affects episodic-procedural network interactions and how these network manipulations affect episodic and procedural memory in healthy young adults. Compared to control (vertex) stimulation, hippocampal network-targeted stimulation increased within-network functional connectivity and hippocampal connectivity with the caudate. It also increased episodic, relative to procedural, memory, and this persisted one week later. The differential effect on episodic versus procedural memory was associated with increased functional connectivity between the caudate, precuneus, and ventrolateral thalamus. These findings provide direct evidence of episodic-procedural network competition, mediated by regions common to both networks. Enhanced hippocampal network connectivity may boost episodic, but decrease procedural, memory by co-opting resources shared between networks.


Assuntos
Memória Episódica , Adulto Jovem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/fisiologia , Hipocampo/fisiologia , Neuroimagem
8.
Neurobiol Aging ; 109: 145-157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740076

RESUMO

Episodic memory is supported by hippocampal interactions with a distributed network. Aging is associated with memory decline and network de-differentiation. However, the role of de-differentiation in memory decline has not been directly tested. We reasoned that hippocampal network-targeted stimulation could test these theories, as age-related changes in the network response to stimulation would indicate network reorganization, and corresponding changes in memory would suggest that this reorganization is functional. We compared effects of stimulation on fMRI connectivity and memory in younger versus older adults. Theta-burst network-targeted stimulation of left lateral parietal cortex selectively increased hippocampal network connectivity and modulated memory in younger adults. In contrast, stimulation in older adults increased connectivity throughout the brain, without network selectivity, and did not influence memory. These findings provide evidence that network responses to stimulation are de-differentiated in aging and suggest that age-related de-differentiation is relevant for memory. This manuscript is part of the Special Issue entitled "Cognitive Neuroscience of Healthy and Pathological Aging" edited by Drs. M. N. Rajah, S. Belleville, and R. Cabeza. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Hipocampo/patologia , Hipocampo/fisiologia , Memória Episódica , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Idoso , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Transtornos da Memória/terapia , Pessoa de Meia-Idade , Rede Nervosa/patologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto Jovem
9.
Trends Cogn Sci ; 26(1): 53-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836769

RESUMO

Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.


Assuntos
Hipocampo , Memória , Cognição , Movimentos Oculares , Hipocampo/fisiologia , Humanos , Memória/fisiologia
10.
Nat Hum Behav ; 5(12): 1707-1716, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34239076

RESUMO

Damage to specific brain circuits can cause specific neuropsychiatric symptoms. Therapeutic stimulation to these same circuits may modulate these symptoms. To determine whether these circuits converge, we studied depression severity after brain lesions (n = 461, five datasets), transcranial magnetic stimulation (n = 151, four datasets) and deep brain stimulation (n = 101, five datasets). Lesions and stimulation sites most associated with depression severity were connected to a similar brain circuit across all 14 datasets (P < 0.001). Circuits derived from lesions, deep brain stimulation and transcranial magnetic stimulation were similar (P < 0.0005), as were circuits derived from patients with major depression versus other diagnoses (P < 0.001). Connectivity to this circuit predicted out-of-sample antidepressant efficacy of transcranial magnetic stimulation and deep brain stimulation sites (P < 0.0001). In an independent analysis, 29 lesions and 95 stimulation sites converged on a distinct circuit for motor symptoms of Parkinson's disease (P < 0.05). We conclude that lesions, transcranial magnetic stimulation and DBS converge on common brain circuitry that may represent improved neurostimulation targets for depression and other disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Transtornos Mentais/terapia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Estimulação Magnética Transcraniana
11.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34144985

RESUMO

Although the human hippocampus is necessary for long-term memory, controversial findings suggest that it may also support short-term memory in the service of guiding effective behaviors during learning. We tested the counterintuitive theory that the hippocampus contributes to long-term memory through remarkably short-term processing, as reflected in eye movements during scene encoding. While viewing scenes for the first time, short-term retrieval operative within the episode over only hundreds of milliseconds was indicated by a specific eye-movement pattern, which was effective in that it enhanced spatiotemporal memory formation. This viewing pattern was predicted by hippocampal theta oscillations recorded from depth electrodes and by shifts toward top-down influence of hippocampal theta on activity within visual perception and attention networks. The hippocampus thus supports short-term memory processing that coordinates behavior in the service of effective spatiotemporal learning.


Assuntos
Hipocampo , Aprendizagem , Movimentos Oculares , Humanos , Memória de Curto Prazo , Percepção Visual
12.
Dev Sci ; 24(6): e13121, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34060181

RESUMO

The power and precision with which humans link language to cognition is unique to our species. By 3-4 months of age, infants have already established this link: simply listening to human language facilitates infants' success in fundamental cognitive processes. Initially, this link to cognition is also engaged by a broader set of acoustic stimuli, including non-human primate vocalizations (but not other sounds, like backwards speech). But by 6 months, non-human primate vocalizations no longer confer this cognitive advantage that persists for speech. What remains unknown is the mechanism by which these sounds influence infant cognition, and how this initially broader set of privileged sounds narrows to only human speech between 4 and 6 months. Here, we recorded 4- and 6-month-olds' EEG responses to acoustic stimuli whose behavioral effects on infant object categorization have been previously established: infant-directed speech, backwards speech, and non-human primate vocalizations. We document that by 6 months, infants' 4-9 Hz neural activity is modulated in response to infant-directed speech and non-human primate vocalizations (the two stimuli that initially support categorization), but that 4-9 Hz neural activity is not modulated at either age by backward speech (an acoustic stimulus that doesn't support categorization at either age). These results advance the prior behavioral evidence to suggest that by 6 months, speech and non-human primate vocalizations elicit distinct changes in infants' cognitive state, influencing performance on foundational cognitive tasks such as object categorization.


Assuntos
Idioma , Percepção da Fala , Animais , Desenvolvimento Infantil/fisiologia , Cognição/fisiologia , Humanos , Lactente , Desenvolvimento da Linguagem , Fala/fisiologia , Percepção da Fala/fisiologia
13.
Curr Biol ; 31(7): 1428-1437.e5, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33545044

RESUMO

Episodic memory involves the reinstatement of distributed patterns of brain activity present when events were initially experienced. The hippocampus is thought to coordinate reinstatement via its interactions with a network of brain regions, but this hypothesis has not been causally tested in humans. The current study directly tested the involvement of the hippocampal network in reinstatement using network-targeted noninvasive stimulation. We measured reinstatement of multi-voxel patterns of functional magnetic resonance imaging (fMRI) activity during encoding and retrieval of naturalistic video clips depicting everyday activities. Reinstatement of video-specific activity patterns was robust in posterior parietal and occipital areas previously implicated in event reinstatement. Theta-burst stimulation targeting the hippocampal network increased video-specific reinstatement of fMRI activity patterns in occipital cortex and improved memory accuracy relative to stimulation of a control out-of-network location. Furthermore, stimulation targeting the hippocampal network influenced the trial-by-trial relationship between hippocampal activity during encoding and later reinstatement in occipital cortex. These findings implicate the hippocampal network in the reinstatement of spatially distributed patterns of event-specific activity and identify a role for the hippocampus in encoding complex naturalistic events that later undergo cortical reinstatement.


Assuntos
Mapeamento Encefálico , Hipocampo/fisiologia , Memória Episódica , Humanos , Imageamento por Ressonância Magnética , Rememoração Mental
14.
Prog Neurobiol ; 201: 102027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33640412

RESUMO

During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.


Assuntos
Córtex Olfatório , Olfato , Mapeamento Encefálico , Córtex Cerebral , Hipocampo , Humanos , Córtex Olfatório/diagnóstico por imagem , Órgãos dos Sentidos
15.
J Exp Psychol Gen ; 150(5): 873-889, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32969680

RESUMO

Memories for episodes are temporally structured. Cognitive models derived from list-learning experiments attribute this structure to the retrieval of temporal context information that indicates when a memory occurred. These models predict key features of memory recall, such as the strong tendency to retrieve studied items in the order in which they were first encountered. Can such models explain ecological memory behaviors, such as eye movements during encoding and retrieval of complex visual stimuli? We tested predictions from retrieved-context models using three data sets involving recognition memory and free viewing of complex scenes. Subjects reinstated sequences of eye movements from one scene-viewing episode to the next. Moreover, sequence reinstatement decayed over time and was associated with successful memory. We observed memory-driven reinstatement even after accounting for intrinsic scene properties that produced consistent eye movements. These findings confirm predictions of retrieved-context models, suggesting retrieval of temporal context influences complex behaviors generated during naturalistic memory experiences. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Movimentos Oculares/fisiologia , Rememoração Mental/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Feminino , Humanos , Masculino , Tempo
16.
J Neurosci ; 40(45): 8726-8733, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33051355

RESUMO

When direct experience is unavailable, animals and humans can imagine or infer the future to guide decisions. Behavior based on direct experience versus inference may recruit partially distinct brain circuits. In rodents, the orbitofrontal cortex (OFC) contains neural signatures of inferred outcomes, and OFC is necessary for behavior that requires inference but not for responding driven by direct experience. In humans, OFC activity is also correlated with inferred outcomes, but it is unclear whether OFC activity is required for inference-based behavior. To test this, we used noninvasive network-based continuous theta burst stimulation (cTBS) in human subjects (male and female) to target lateral OFC networks in the context of a sensory preconditioning task that was designed to isolate inference-based behavior from responding that can be based on direct experience alone. We show that, relative to sham, cTBS targeting this network impairs reward-related behavior in conditions in which outcome expectations have to be mentally inferred. In contrast, OFC-targeted stimulation does not impair behavior that can be based on previously experienced stimulus-outcome associations. These findings suggest that activity in the targeted OFC network supports decision-making when outcomes have to be mentally simulated, providing converging cross-species evidence for a critical role of OFC in model-based but not model-free control of behavior.SIGNIFICANCE STATEMENT It is widely accepted that the orbitofrontal cortex (OFC) is important for decision-making. However, it is less clear how exactly this region contributes to behavior. Here we test the hypothesis that the human OFC is only required for decision-making when future outcomes have to be mentally simulated, but not when direct experience with stimulus-outcome associations is available. We show that targeting OFC network activity in humans using network-based continuous theta burst stimulation selectively impairs behavior that requires inference but does not affect responding that can be based solely on direct experience. These results are in line with previous findings in animals and suggest a critical role for human OFC in model-based but not model-free behavior.


Assuntos
Antecipação Psicológica/fisiologia , Tomada de Decisões/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Condicionamento Psicológico , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Odorantes , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Recompensa , Sensação/fisiologia , Ritmo Teta/fisiologia , Adulto Jovem
17.
J Neurosci ; 40(38): 7300-7310, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817245

RESUMO

The human cerebellum is thought to interact with distributed brain networks to support cognitive abilities such as episodic memory and semantic prediction. Hippocampal and fronto-temporo-parietal networks that respectively support episodic memory versus semantic prediction have been associated with distinct endogenous oscillatory activity frequency bands: theta (∼3-8 Hz) versus beta (∼13-30 Hz) respectively. We sought to test whether it is possible to toggle cerebellar participation in episodic memory versus semantic prediction by noninvasively stimulating with theta versus beta rhythmic transcranial magnetic stimulation. In human subjects of both sexes, cerebellar theta stimulation improved episodic memory encoding but did not influence neural signals of semantic prediction, whereas beta stimulation of the same cerebellar location increased neural signals of semantic prediction but did not influence episodic memory encoding. This constitutes evidence for double dissociation of cerebellar contributions to semantic prediction versus episodic memory based on stimulation rhythm, supporting the hypothesis that the cerebellum can be biased to support these distinct cognitive abilities at the command of network-specific rhythmic activity.SIGNIFICANCE STATEMENT The cerebellum interacts with several distinct large-scale brain networks for cognitive function, but the factors governing selectivity of such interactions for particular functions are not fully understood. We tested the hypothesis that cerebellar contributions to cognition are guided by neural oscillations with function-specific frequency bands. We demonstrated that matching noninvasive stimulation to network-specific frequencies selectively enhanced episodic memory versus semantic prediction. These findings suggest that cerebellar contributions to cognitive networks are selected based on corresponding activity rhythms and could be used to develop cerebellar stimulation interventions for specific neurocognitive impairments.


Assuntos
Ritmo beta , Cerebelo/fisiologia , Memória Episódica , Semântica , Ritmo Teta , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos
18.
J Neurosci ; 40(37): 7155-7168, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817326

RESUMO

The hippocampus supports episodic memory via interaction with a distributed brain network. Previous experiments using network-targeted noninvasive brain stimulation have identified episodic memory enhancements and modulation of activity within the hippocampal network. However, mechanistic insights were limited because these effects were measured long after stimulation and therefore could have reflected various neuroplastic aftereffects with extended time courses. In this experiment with human subjects of both sexes, we tested for immediate stimulation impact on encoding-related activity of the hippocampus and immediately adjacent medial-temporal cortex by delivering theta-burst transcranial magnetic stimulation (TBS) concurrent with fMRI, as an immediate impact of stimulation would suggest an influence on neural activity. We reasoned that TBS would be particularly effective for influencing the hippocampus because rhythmic neural activity in the theta band is associated with hippocampal memory processing. First, we demonstrated that it is possible to obtain robust fMRI correlates of task-related activity during concurrent TBS. We then identified immediate effects of TBS on encoding of visual scenes. Brief volleys of TBS targeting the hippocampal network increased activity of the targeted (left) hippocampus during scene encoding and increased subsequent recollection. Stimulation did not influence activity during an intermixed numerical task with no memory demand. Control conditions using beta band and out-of-network stimulation also did not influence hippocampal activity or recollection. TBS targeting the hippocampal network therefore immediately impacted hippocampal memory processing. This suggests direct, beneficial influence of stimulation on hippocampal neural activity related to memory and supports the role of theta-band activity in human episodic memory.SIGNIFICANCE STATEMENT Can noninvasive stimulation directly impact function of indirect, deep-brain targets, such as the hippocampus? We tested this by targeting an accessible region of the hippocampal network via transcranial magnetic stimulation during concurrent fMRI. We reasoned that theta-burst stimulation would be particularly effective for impacting hippocampal function, as this stimulation rhythm should resonate with the endogenous theta-nested-gamma activity prominent in hippocampus. Indeed, theta-burst stimulation targeting the hippocampal network immediately impacted hippocampal activity during encoding, improving memory formation as indicated by enhanced later recollection. Rhythm- and location-control stimulation conditions had no such effects. These findings suggest a direct influence of noninvasive stimulation on hippocampal neural activity and highlight that the theta-burst rhythm is relatively privileged in its ability to influence hippocampal memory function.


Assuntos
Conectoma , Hipocampo/fisiologia , Memória , Ritmo Teta , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Magnética Transcraniana , Percepção Visual
19.
Curr Opin Behav Sci ; 32: 35-42, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32266318

RESUMO

Episodic memory depends on the hippocampus and its coordination with a distributed network of interconnected brain areas. Recent findings indicate that the function of this network can be altered using network-targeted transcranial magnetic stimulation (TMS). These stimulation experiments have identified increases in episodic memory and the network-wide coordination it requires. Network-target stimulation differs from the dominant framework for TMS experiments, in which stimulation has been considered as a focal virtual lesion. We offer a conceptual framework for important distinctions between network-wide and focal effects of stimulation on episodic memory and discuss factors that may influence the quality and quantity of stimulation effects. Findings from these experiments indicate that many properties of episodic memory can be effectively studied at the network level via noninvasive stimulation.

20.
Curr Biol ; 30(3): 490-498.e4, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31956033

RESUMO

Outcome-guided behavior requires knowledge about the current value of expected outcomes. Such behavior can be isolated in the reinforcer devaluation task, which assesses the ability to infer the current value of specific rewards after devaluation. Animal lesion studies demonstrate that orbitofrontal cortex (OFC) is necessary for normal behavior in this task, but a causal role for human OFC in outcome-guided behavior has not been established. Here, we used sham-controlled, non-invasive, continuous theta-burst stimulation (cTBS) to temporarily disrupt human OFC network activity by stimulating a site in the lateral prefrontal cortex that is strongly connected to OFC prior to devaluation of food odor rewards. Subjects in the sham group appropriately avoided Pavlovian cues associated with devalued food odors. However, subjects in the stimulation group persistently chose those cues, even though devaluation of food odors themselves was unaffected by cTBS. This behavioral impairment was mirrored in changes in resting-state functional magnetic resonance imaging (rs-fMRI) activity such that subjects in the stimulation group exhibited reduced OFC network connectivity after cTBS, and the magnitude of this reduction was correlated with choices after devaluation. These findings demonstrate the feasibility of indirectly targeting the human OFC with non-invasive cTBS and indicate that OFC is specifically required for inferring the value of expected outcomes.


Assuntos
Condicionamento Operante , Sinais (Psicologia) , Córtex Pré-Frontal/fisiopatologia , Reforço Psicológico , Recompensa , Feminino , Alimentos , Humanos , Masculino , Odorantes/análise , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...