Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cureus ; 14(7): e26879, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35978750

RESUMO

Sporadic Creutzfeldt-Jakob disease (CJD) is a rare neurodegenerative condition and a human prion disease. Rapid progressive dementia, myoclonus, visual disturbances, cerebellar signs, and pyramidal/extrapyramidal symptoms are observed in such patients. However, these are non-specific symptoms and can manifest in a variety of other conditions. The occurrence of sporadic CJD in a patient with multiple sclerosis (MS) is rare. This is the case of a 54-year-old man on natazulimab for MS who developed rapid neurocognitive changes along with visual changes, imbalance issues, and mood changes. Diagnosis of sporadic CJD (sCJD) was confirmed through clinical features, physical examination and electroencephalogram findings, cerebral spinal fluid analysis, and later magnetic resonance imaging findings. sCJD with MS being a rare phenomenon, its recognition requires a high index of suspicion, careful chronological evaluation of the patient's symptoms, and relevant investigations that can aid in reaching the diagnosis.

2.
Front Chem ; 10: 896386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720993

RESUMO

Several neurodegenerative diseases are driven by misfolded proteins that assemble into soluble aggregates. These "toxic oligomers" have been associated with a plethora of cellular dysfunction and dysregulation, however the structural features underlying their toxicity are poorly understood. A major impediment to answering this question relates to the heterogeneous nature of the oligomers, both in terms of structural disorder and oligomer size. This not only complicates elucidating the molecular etiology of these disorders, but also the druggability of these targets as well. We have synthesized a class of bifunctional stilbenes to modulate both the conformational toxicity within amyloid beta oligomers (AßO) and the oxidative stress elicited by AßO. Using a neuronal culture model, we demonstrate this bifunctional approach has the potential to counter the molecular pathogenesis of Alzheimer's disease in a powerful, synergistic manner. Examination of AßO structure by various biophysical tools shows that each stilbene candidate uniquely alters AßO conformation and toxicity, providing insight towards the future development of structural correctors for AßO. Correlations of AßO structural modulation and bioactivity displayed by each provides insights for future testing in vivo. The multi-target activity of these hybrid molecules represents a highly advantageous feature for disease modification in Alzheimer's, which displays a complex, multifactorial etiology. Importantly, these novel small molecules intervene with intraneuronal AßO, a necessary feature to counter the cycle of dysregulation, oxidative stress and inflammation triggered during the earliest stages of disease progression.

3.
J Biomol Struct Dyn ; 40(22): 11977-11988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34424133

RESUMO

The recently discovered, membrane-active peptide LBF14 contains several non-proteinogenic amino acids and is able to transform vesicles into tubule networks. The exact membrane interaction mechanism and detailed secondary structure are yet to be determined. We performed molecular dynamics simulations of LBF14 and let it fold de novo into its ensemble of native secondary structures. Histidine protonation state effects on secondary structure were investigated. An MD simulation of the peptide with a lipid bilayer was performed. Simulation results were compared to circular dichroism and electron paramagnetic resonance data of previous studies. LBF14 contains a conserved helical section in an otherwise random structure. Helical stability is influenced by histidine protonation. The peptide localized to the polar layer of the membrane, consistent with experimental results. While the overall secondary structure is unaffected by membrane interaction, Ramachandran plot analysis yielded two distinct peptide conformations during membrane interaction. This conformational change was accompanied by residue repositioning within the membrane. LBF14 only affected the local order in the membrane, and had no measurable effect on pressure. The simulation results are consistent with the previously proposed membrane interaction mechanism of LBF14 and can additionally explain the local interaction mechanism. Communicated by Ramaswamy H. Sarma.


Assuntos
Histidina , Peptídeos , Histidina/química , Peptídeos/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Bicamadas Lipídicas/química
4.
Nanoscale Adv ; 3(14): 4119-4132, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34355118

RESUMO

One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aß) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aß associated with AD. However, characterization of the EVs-associated Aß and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aß present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aß is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aß peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aß associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aß that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.

5.
Front Chem ; 9: 630152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996741

RESUMO

Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.

6.
J Clin Monit Comput ; 35(6): 1485-1489, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180248

RESUMO

Quantification of plasma propofol (2,6-diisopropylphenol) in the context of clinical anaesthesia is challenging because of the need for offline blood sample processing using specialised laboratory equipment and techniques. In this study we sought to refine a simple procedure using solid phase extraction and colorimetric analysis into a benchtop protocol for accurate blood propofol measurement. The colorimetric method based on the reaction of phenols (e.g. propofol) with Gibbs reagent was first tested in 10% methanol samples (n = 50) containing 0.5-6.0 µg/mL propofol. Subsequently, whole blood samples (n = 15) were spiked to known propofol concentrations and processed using reverse phase solid phase extraction (SPE) and colorimetric analysis. The standard deviation of the difference between known and measured propofol concentrations in the methanol samples was 0.11 µg/mL, with limits of agreement of - 0.21 to 0.22 µg/mL. For the blood-processed samples, the standard deviation of the difference between known and measured propofol concentrations was 0.09 µg/mL, with limits of agreement - 0.18 to 0.17 µg/mL. Quantification of plasma propofol with an error of less than 0.2 µg/mL is achievable with a simple and inexpensive benchtop method.


Assuntos
Propofol , Cromatografia Líquida de Alta Pressão , Colorimetria , Humanos , Reprodutibilidade dos Testes , Extração em Fase Sólida
7.
J Mater Chem B ; 8(38): 8845-8852, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026405

RESUMO

Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 µm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.


Assuntos
Dimetilpolisiloxanos/química , Vesículas Extracelulares/metabolismo , Nanopartículas Metálicas/química , Dispositivos Ópticos , Poliestirenos/química , Compostos de Anilina/química , Linhagem Celular Tumoral , Vesículas Extracelulares/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Prata/química , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química
8.
Crit Care Explor ; 2(10): e0199, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33063019

RESUMO

The Sepsis-3 taskforce defined sepsis as suspicion of infection and an acute rise in the Sequential Organ Failure Assessment score by 2 points over the preinfection baseline. Sepsis-3 studies, though, have not distinguished between acute and chronic organ failure, and may not accurately reflect the epidemiology, natural history, or impact of sepsis. Our objective was to determine the extent to which the predictive validity of Sepsis-3 is attributable to chronic rather than acute organ failure. DESIGN: Retrospective cohort study. SETTING: General medicine inpatient service at a tertiary teaching hospital. PATIENTS: A total of 3,755 adult medical acute-care encounters (1,864 confirmed acute infections) over 1 year. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We measured the total Sequential Organ Failure Assessment score at the onset of infection and separated its components (baseline and acute rise) using case-by-case chart reviews. We compared the predictive validities of acuity-focused (acute rise in Sequential Organ Failure Assessment ≥ 2) and conventional (total Sequential Organ Failure Assessment ≥ 2) implementations of Sepsis-3 criteria. Measures of predictive validity were change in the rate of outcomes and change in the area under receiver operating characteristic curves after adding sepsis criteria to multivariate logistic regression models of baseline risk (age, sex, race, and Charlson comorbidity index). Outcomes were inhospital mortality (primary) and ICU transfer or inhospital mortality (secondary). Acuity-focused implementations of Sepsis-3 were associated with neither a change in mortality (2.2% vs 1.2%; p = 0.18) nor a rise in area under receiver operating characteristic curves compared with baseline models (0.67 vs 0.66; p = 0.75). In contrast, conventional implementations were associated with a six-fold change in mortality (2.4% vs 0.4%; p = 0.01) and a rise in area under receiver operating characteristic curves compared with baseline models (0.70 vs 0.66; p = 0.04). Results were similar for the secondary outcome. CONCLUSIONS: The evaluation of the validity of organ dysfunction-based clinical sepsis criteria is prone to bias, because acute organ dysfunction consequent to infection is difficult to separate from preexisting organ failure in large retrospective cohorts.

10.
Appl Opt ; 59(25): 7490-7495, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902446

RESUMO

Soluble, small amyloid-ß oligomers (AßO) are recognized as significant contributors to the pathology of Alzheimer's disease (AD). Although drugs for treating AD symptoms have been approved, no therapy targeting amyloid-ß (Aß) capable of modifying the course of the disease is available. In an effort to develop a label-free method for screening new anti-AD therapeutic agents, we show the use of a surface-enhanced Raman scattering (SERS) active substrate for detecting the interactions between Aß peptides and spin-labeled fluorine (SLF), a peptide aggregation inhibitor. Changes in the peak positions and intensity ratios of two spectral peaks near 1600cm-1 and 2900cm-1 can be used to monitor the molecular interactions between SLF and Aß. This study demonstrates the potential of SERS spectroscopy for rapidly screening and identifying new anti-Aß therapeutic agents.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Flúor/metabolismo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Análise Espectral Raman , Peptídeos beta-Amiloides/química , Interações Medicamentosas , Flúor/química , Agregação Patológica de Proteínas/metabolismo , Marcadores de Spin
11.
Biochim Biophys Acta Biomembr ; 1862(10): 183394, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562695

RESUMO

Membrane active peptides (MAPs) have gained wide interest due to their far reaching applications in drug discovery and drug delivery. The search for new MAPs, however, has been largely skewed with bias selecting for physicochemical parameters believed to be important for membrane activity, such as alpha helicity, cationicity and hydrophobicity. Here we carry out a search-and-find strategy to screen a 100,000-membered one-bead-one-compound (OBOC) combinatorial peptide library for lead compounds, agnostic of those physicochemical constraints. Such a synthetic strategy also permits expansion of our peptide repertoire to include unnatural amino acids. Using this approach, we discovered a structurally unique lead peptide LBF14, a linear 14-mer peptide, that induces gross morphological disruption of membranes, irrespective of membrane composition. Further, we demonstrate that the unique insertion mechanism of the peptide, visualized by spinning disc confocal microscopy and further analyzed by electron paramagnetic resonance measurements, may be the cause of this large scale membrane deformation. We also demonstrate the robustness, reproducibility, and potential application of this technique to discover and characterize new membrane active peptides that display activity by local insertion and subsequent allosteric effects leading to global membrane disruption.


Assuntos
Descoberta de Drogas , Proteínas de Membrana/química , Peptídeos/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Conformação Proteica
12.
Physiol Meas ; 40(11): 115008, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31652430

RESUMO

OBJECTIVE: The ratio of the partial pressure of arterial oxygen to fraction of inspired oxygen is a key component of the sequential organ failure assessment score that operationally defines sepsis. But, it is calculated infrequently due to the need for the acquisition of an arterial blood gas. So, we sought to find an optimal imputation strategy for the estimation of sepsis-defining hypoxemic respiratory failure using oximetry instead of an arterial blood gas. APPROACH: We retrospectively studied a sample of non-intubated acute-care patients with oxygen saturation recorded ⩽10 min before arterial blood sampling (N = 492 from 2013-2017). We imputed ratios of the partial pressure of arterial oxygen to the fraction of inspired oxygen and sepsis criteria from existing imputation equations (Hill, Severinghaus-Ellis, Rice, and Pandharipande) and compared them with the ratios and sepsis criteria measured from arterial blood gases. We devised a modified model-based equation to eliminate the bias of the results. MAIN RESULTS: Hypoxemia severity estimates from the Severinghaus-Ellis equation were more accurate than those from other existing equations, but showed significant proportional bias towards under-estimation of hypoxemia severity, especially at oxygen saturations >96%. Our modified equation eliminated bias and surpassed others on all imputation quality metrics. SIGNIFICANCE: Our modified imputation equation, [Formula: see text] is the first one that is free of bias at all oxygen saturations. It resulted in ratios of partial pressure of arterial oxygen to fraction of inspired oxygen and sepsis respiratory criteria closest to those obtained by arterial blood gas testing and is the optimal imputation strategy for non-intubated acute-care patients.


Assuntos
Artérias/metabolismo , Oximetria , Oxigênio/sangue , Pressão Parcial , Sepse/diagnóstico , Idoso , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos
13.
Colloids Surf B Biointerfaces ; 184: 110511, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600680

RESUMO

Milk Fat Globules with their unique interfacial structure and membrane composition are a key nutritional source for mammalian infants, however, there is a limited understanding of the dynamics of fat digestion in these structures. Lipid digestion is an interfacial process involving interactions of enzymes and bile salts with the interface of suspended lipid droplets in an aqueous environment. In this study, we have developed an electron paramagnetic resonance spectroscopy approach to evaluate real time dynamics of milk fat globules interfacial structure during simulated intestinal digestion. To measure these dynamics, natural milk fat globule membrane was labeled with EPR-active probe, partitioning of EPR probes into MFGs membrane was validated using saturation-recovery measurements and calculation of the depth parameter Φ. After validation, the selected spin probe was used to evaluate the membrane's fluidity as a measure of the interface's modulation in the presence of bile salts and pancreatic lipase. Independently, bile salts were found to have a rigidifying effect on the spin probed MFGM, while pancreatic lipase resulted in an increase in membrane fluidity. When combined, the effect of lipase appears to be diminished in the presence of bile salts. These results indicate the efficacy of EPR in providing an insight into small time scale molecular dynamics of phospholipid interfaces in milk fat globules. Understanding interfacial dynamics of naturally occurring complex structures can significantly aid in understanding the role of interfacial composition and structural complexity in delivery of nutrients during digestion.


Assuntos
Digestão , Glicolipídeos/análise , Glicolipídeos/metabolismo , Glicoproteínas/análise , Glicoproteínas/metabolismo , Secreções Intestinais/metabolismo , Intestinos/fisiologia , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Gotículas Lipídicas , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
14.
Structure ; 27(10): 1547-1560.e4, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402219

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy of full-length vimentin and X-ray crystallography of vimentin peptides has provided concordant structural data for nearly the entire central rod domain of the protein. In this report, we use a combination of EPR spectroscopy and molecular modeling to determine the structure and dynamics of the missing region and unite the separate elements into a single structure. Validation of the linker 1-2 (L1-2) modeling approach is demonstrated by the close correlation between EPR and X-ray data in the previously solved regions. Importantly, molecular dynamic (MD) simulation of the constructed model agrees with spin label motion as determined by EPR. Furthermore, MD simulation shows L1-2 heterogeneity, with a concerted switching of states among the dimer chains. These data provide the first ever experimentally driven model of a complete intermediate filament rod domain, providing research tools for further modeling and assembly studies.


Assuntos
Mutação , Vimentina/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Estrutura Secundária de Proteína , Marcadores de Spin , Vimentina/genética
15.
Free Radic Biol Med ; 143: 25-46, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356870

RESUMO

Elevation of blood triglycerides, primarily triglyceride-rich lipoproteins (TGRL), is an independent risk factor for cardiovascular disease and vascular dementia (VaD). Accumulating evidence indicates that both atherosclerosis and VaD are linked to vascular inflammation. However, the role of TGRL in vascular inflammation, which increases risk for VaD, remains largely unknown and its underlying mechanisms are still unclear. We strived to determine the effects of postprandial TGRL exposure on brain microvascular endothelial cells, the potential risk factor of vascular inflammation, resulting in VaD. We showed in Aung et al., J Lipid Res., 2016 that postprandial TGRL lipolysis products (TL) activate mitochondrial reactive oxygen species (ROS) and increase the expression of the stress-responsive protein, activating transcription factor 3 (ATF3), which injures human brain microvascular endothelial cells (HBMECs) in vitro. In this study, we deployed high-throughput sequencing (HTS)-based RNA sequencing methods and mito stress and glycolytic rate assays with an Agilent Seahorse XF analyzer and profiled the differential expression of transcripts, constructed signaling pathways, and measured mitochondrial respiration, ATP production, proton leak, and glycolysis of HBMECs treated with TL. Conclusions: TL potentiate ROS by mitochondria which activate mitochondrial oxidative stress, decrease ATP production, increase mitochondrial proton leak and glycolysis rate, and mitochondria DNA damage. Additionally, CPT1A1 siRNA knockdown suppresses oxidative stress and prevents mitochondrial dysfunction and vascular inflammation in TL treated HBMECs. TL activates ATF3-MAPKinase, TNF, and NRF2 signaling pathways. Furthermore, the NRF2 signaling pathway which is upstream of the ATF3-MAPKinase signaling pathway, is also regulated by the mitochondrial oxidative stress. We are the first to report differential inflammatory characteristics of transcript variants 4 (ATF3-T4) and 5 (ATF3-T5) of the stress responsive gene ATF3 in HBMECs induced by postprandial TL. Specifically, our data indicates that ATF3-T4 predominantly regulates the TL-induced brain microvascular inflammation and TNF signaling. Both siRNAs of ATF3-T4 and ATF3-T5 suppress cells apoptosis and lipotoxic brain microvascular endothelial cells. These novel signaling pathways triggered by oxidative stress-responsive transcript variants, ATF3-T4 and ATF3-T5, in the brain microvascular inflammation induced by TGRL lipolysis products may contribute to pathophysiological processes of vascular dementia.


Assuntos
Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Encéfalo/patologia , Microvasos/lesões , Mitocôndrias/metabolismo , Estresse Oxidativo , Apoptose , Lesões Encefálicas/metabolismo , Dano ao DNA , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Variação Genética , Glicólise , Humanos , Inflamação , Lipólise , Microvasos/metabolismo , Consumo de Oxigênio , Período Pós-Prandial , Prótons , RNA Interferente Pequeno/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
16.
Molecules ; 23(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103547

RESUMO

There is growing recognition regarding the role of intracellular amyloid beta (Aß) in the Alzheimer's disease process, which has been linked with aberrant signaling and the disruption of protein degradation mechanisms. Most notably, intraneuronal Aß likely underlies the oxidative stress and mitochondrial dysfunction that have been identified as key elements of disease progression. In this study, we employed fluorescence imaging to explore the ability of a bifunctional small molecule to reduce aggregates of intracellular Aß and attenuate oxidative stress. Structurally, this small molecule is comprised of a nitroxide spin label linked to an amyloidophilic fluorene and is known as spin-labeled fluorene (SLF). The effect of the SLF on intracellular Aß accumulation and oxidative stress was measured in MC65 cells, a human neuronal cell line with inducible expression of the amyloid precursor protein and in the N2a neuronal cell line treated with exogenous Aß. Super-resolution microscopy imaging showed SLF decreases the accumulation of intracellular Aß. Confocal microscopy imaging of MC65 cells treated with a reactive oxygen species (ROS)-sensitive dye demonstrated SLF significantly reduces the intracellular Aß-induced ROS signal. In order to determine the contributions of the separate SLF moieties to these protective activities, experiments were also carried out on cells with nitroxides lacking the Aß targeting domain or fluorene derivatives lacking the nitroxide functionality. The findings support a synergistic effect of SLF in counteracting both the conformational toxicity of both endogenous and exogenous Aß, its promotion of ROS, and Aß metabolism. Furthermore, these studies demonstrate an intimate link between ROS production and Aß oligomer formation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Linhagem Celular , Fluorenos/química , Fluorenos/farmacologia , Expressão Gênica , Humanos , Modelos Moleculares , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Marcadores de Spin
17.
PLoS One ; 12(8): e0181448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771487

RESUMO

BACKGROUND: Charted vital signs and laboratory results represent intermittent samples of a patient's dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. METHODS AND FINDINGS: We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). CONCLUSIONS: Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs.


Assuntos
Sistema Cardiovascular/fisiopatologia , Eletrocardiografia , Assistência ao Paciente , Sistema Respiratório/fisiopatologia , Idoso , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Admissão do Paciente , Transferência de Pacientes , Prognóstico , Estudos Retrospectivos , Sinais Vitais
18.
Hepatology ; 65(5): 1670-1682, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100006

RESUMO

The identification of environmental factors that lead to loss of tolerance has been coined the holy grail of autoimmunity. Our work has focused on the reactivity of antimitochondrial autoantibodies (AMA) to chemical xenobiotics and has hypothesized that a modified peptide within PDC-E2, the major mitochondrial autoantigen, will have been immunologically recognized at the time of loss of tolerance. Herein, we successfully applied intein technology to construct a PDC-E2 protein fragment containing amino acid residues 177-314 of PDC-E2 by joining a recombinant peptide spanning residues 177-252 (PDC-228) with a 62-residue synthetic peptide from 253 to 314 (PP), which encompasses PDC-E2 inner lipoyl domain (ILD). We named this intein-constructed fragment PPL. Importantly, PPL, as well as lipoic acid conjugated PPL (LA-PPL) and xenobiotic 2-octynoic acid conjugated PPL (2OA-PPL), are recognized by AMA. Of great importance, AMA has specificity for the 2OA-modified PDC-E2 ILD peptide backbone distinct from antibodies that react with native lipoylated PDC-E2 peptide. Interestingly, this unique AMA subfraction is of the immunoglobulin M isotype and more dominant in early-stage primary biliary cholangitis (PBC), suggesting that exposure to 2OA-PPL-like compounds occurs early in the generation of AMA. To understand the structural basis of this differential recognition, we analyzed PPL, LA-PPL, and 2OA-PPL using electron paramagnetic resonance spectroscopy, with confirmations by enzyme-linked immunosorbent assay, immunoblotting, and affinity antibody analysis. We demonstrate that the conformation of PDC-E2 ILD is altered when conjugated with 2OA, compared to conjugation with lipoic acid. CONCLUSION: A molecular understanding of the conformation of xenobiotic-modified PDC-E2 is critical for understanding xenobiotic modification and loss of tolerance in PBC with widespread implications for a role of environmental chemicals in the induction of autoimmunity. (Hepatology 2017;65:1670-1682).


Assuntos
Autoanticorpos/sangue , Colangite/induzido quimicamente , Mitocôndrias/imunologia , Piruvato Desidrogenase (Lipoamida)/efeitos dos fármacos , Xenobióticos/toxicidade , Afinidade de Anticorpos , Estudos de Casos e Controles , Colangite/sangue , Colangite/imunologia , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Imunoadsorção Enzimática , Humanos , Inteínas , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/imunologia
19.
J Phys Chem C Nanomater Interfaces ; 121(43): 23974-23987, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30214656

RESUMO

The soluble oligomeric form of the amyloid beta (Aß) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aß. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aß and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aß toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aß, distinct binding affinities for SLF are revealed. The Aß monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aß, which displays an affinity for SLF on the order of 100 µM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aß peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aß interaction and allow us to develop a new general method for examining protein aggregation.

20.
J Alzheimers Dis ; 55(4): 1667-1681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27911291

RESUMO

Alzheimer's disease (AD) is characterized by depositions of the amyloid-ß (Aß) peptide in the brain. The disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. It is therefore imperative to develop methods that permit early detection and monitoring of disease progression. In addition, the multifactorial pathogenesis of AD has identified several potential avenues for AD intervention. Thus, evaluation of therapeutic candidates over lengthy trial periods also demands a practical, noninvasive method for measuring Aß in the brain. Magnetic resonance imaging (MRI) is the obvious choice for such measurements, but contrast enhancement for Aß has only been achieved using Gd(III)-based agents. There is great interest in gadolinium-free methods to image the brain. In this study, we provide the first demonstration that a nitroxide-based small-molecule produces MRI contrast in brain specimens with elevated levels of Aß. The molecule is comprised of a  fluorene (a molecule with high affinity for Aß) and a nitroxide spin label (a paramagnetic MRI contrast species). Labeling of brain specimens with the spin-labeled fluorene produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of spin-labeled fluorene into live mice resulted in good brain penetration, with the compound able to generate contrast 24-h post injection. These results provide a proof of concept method that can be used for early, noninvasive, gadolinium-free detection of amyloid plaques by MRI.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Meios de Contraste/metabolismo , Imageamento por Ressonância Magnética , Metais/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Mutação/genética , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...