Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 24(11): 5967-9, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18459754

RESUMO

A method is presented to tune the holes in colloidal masks used for nanolithography. Using a simple wet-chemical method, a thin layer of silica is grown on masks of silica particles. The size of the holes is controlled by the amount of tetraethoxysilane (TEOS) added. More accurate tuning of the hole size is possible in the presence of a calibrated seed dispersion of silica colloids. We demonstrate modified masks that were used to create arrays of metal nanoparticles with a size ranging from 400 nm, for unmodified masks, down to tens of nanometers. The method is easy-to-use, fast, and inexpensive.

2.
Nano Lett ; 5(6): 1175-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15943464

RESUMO

A method is presented to control the in-plane ordering, size, and interparticle distance of nanoparticles fabricated by evaporation through a mask of colloidal particles. The use of optical tweezers combined with critical point drying gives single-particle position control over the colloidal particles in the mask. This extends the geometry of the colloidal masks from (self-organized) hexagonal to any desired symmetry and spacing. Control over the mask's hole size is achieved by MeV ion irradiation, which causes the colloids to expand in the in-plane direction, thus shrinking the size of the holes. After modification of the mask, evaporation at different angles with respect to the mask gives additional control over structure and interparticle distance, allowing nanoparticles of different materials to be deposited next to each other. We demonstrate large arrays of metal nanoparticles with dimensions in the 15-30 nm range, with control over the interparticle distance and in-plane ordering.


Assuntos
Coloides/química , Íons , Nanotecnologia/métodos , Vidro/química , Ouro/química , Lasers , Microscopia Eletrônica de Varredura , Modelos Teóricos , Silício/química , Xenônio/química
3.
Faraday Discuss ; 123: 107-19; discussion 173-92, 419-21, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12638857

RESUMO

We have studied, with quantitative confocal microscopy, epitaxial colloidal crystal growth of particles interacting with an almost hard-sphere (HS) potential in a gravitational field and density matched colloids interacting with a long-range (LR) repulsive potential with a body-centred cubic (BCC) equilibrium crystal phase. We show that in both cases it is possible to grow thick, stacking fault-free metastable crystals: close-packed crystals with any stacking sequence, including hexagonal close packed (HCP), for the HS particles and face-centred cubic (FCC) in the case of the LR colloids. In accordance with recent computer simulations done for HS particles it was found that the optimal lattice constant to grow HS HCP crystals was larger than that of equilibrium FCC crystals. In addition, because of the absence of gravity, pre-freezing could be observed for the particles with the LR potential on a template of charged lines. We also argue that the ability to manipulate colloids with highly focused light, optical traps or tweezers, will become an important tool in both the study of colloidal crystallization and in making new structures. We show how cheap 2D and 3D templates can be made with optical tweezers and demonstrate, in proof of principle experiments with core-shell colloids, how light fields can generate crystal nuclei and other structures in the bulk of concentrated dispersions and how the effect of these structures on the rest of a dispersion can be studied quantitatively in 3D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...