Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(1): 420-433, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546771

RESUMO

In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.


Assuntos
Himenópteros , Telomerase , Animais , Telomerase/genética , Telomerase/metabolismo , Himenópteros/genética , Filogenia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Conformação de Ácido Nucleico , RNA/genética , Plantas/genética , Eucariotos/genética
2.
Insects ; 13(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36555033

RESUMO

Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015-2020 (Bombus terrestris/lucorum) and 2015-2017 (Bombus lapidarius). The greatest prevalence was in the case of Crithidia bombi, where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum. In the case of B. lapidarius, 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum. Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi. The greatest prevalence of C. bombi was found in urban or woodland areas.

3.
Insects ; 11(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456127

RESUMO

Bumble bees are important pollinators broadly used by farmers in greenhouses and under conditions in which honeybee pollination is limited. As such, bumble bees are increasingly being reared for commercial purposes, which brings into question whether individuals reared under laboratory conditions are fully capable of physiological adaptation to field conditions. To understand the changes in bumble bee organism caused by foraging, we compared the fundamental physiological and immunological parameters of Bombus terrestris workers reared under constant optimal laboratory conditions with workers from sister colonies that were allowed to forage for two weeks in the field. Nutritional status and immune response were further determined in wild foragers of B. terrestris that lived under the constant influence of natural stressors. Both wild and laboratory-reared workers subjected to the field conditions had a lower protein concentration in the hemolymph and increased antimicrobial activity, the detection of which was limited in the non-foragers. However, in most of the tested parameters, specifically the level of carbohydrates, antioxidants, total hemocyte concentration in the hemolymph and melanization response, we did not observe any significant differences between bumble bee workers produced in the laboratory and wild animals, nor between foragers and non-foragers. Our results show that bumble bees reared under laboratory conditions can mount a sufficient immune response to potential pathogens and cope with differential food availability in the field, similarly to the wild bumble bee workers.

4.
Front Physiol ; 7: 574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932998

RESUMO

Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.

5.
PLoS One ; 10(11): e0142261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26559946

RESUMO

Insects' fat bodies are responsible for nutrient storage and for a significant part of intermediary metabolism. Thus, it can be expected that the structure and content of the fat body will adaptively change, if an insect is going through different life stages. Bumblebee queens belong to such insects as they dramatically change their physiology several times over their lives in relation to their solitary overwintering, independent colony foundation stage, and during the colony life-cycle ending in the senescent stage. Here, we report on changes in the ultrastructure and lipid composition of the peripheral fat body of Bombus terrestris queens in relation to seasonal changes in the queens' activity. Six life stages are defined and evaluated in particular: pharate, callow, before and after hibernation, egg-laying, and senescence. Transmission electron microscopy revealed that the fat body contained two main cell types-adipocytes and oenocytes. Only adipocytes reveal important changes related to the life phase, and mostly the ration between inclusion and cytoplasm volume varies among particular stages. Both electron microscopy and chemical analyses of lipids highlighted seasonal variability in the quantity of the stored lipids, which peaked prior to hibernation. Triacylglycerols appeared to be the main energy source during hibernation, while the amount of glycogen before and after hibernation remained unchanged. In addition, we observed that the representation of some fatty acids within the triacylglycerols change during the queen's life. Last but not least, we show that fat body cell membranes do not undergo substantial changes concerning phospholipid composition in relation to overwintering. This finding supports the hypothesis that the cold-adaptation strategy of bumblebee queens is more likely to be based on polyol accumulation than on the restructuring of lipid membranes.


Assuntos
Adaptação Fisiológica/fisiologia , Abelhas/fisiologia , Corpo Adiposo/metabolismo , Estações do Ano , Animais , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Hibernação
6.
Chempluschem ; 80(5): 839-850, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-31973346

RESUMO

Two-dimensional comprehensive gas chromatography (GC×GC) coupled with mass detection was used as a tool for biosynthetic studies of bumblebee pheromones. Prior to biosynthetic experiments, the chromatographic behaviour of isotopically modified esters in the GC×GC system as well as their behaviour in mass detection was studied. The male marking pheromones of Bombus lucorum, Bombus lapidarius and Bombus terrestris were investigated. Main pheromonal components are ethyl tetradec-9-enoate (53 %) and ethyl dodecanoate (6 %) in B. lucorum, hexadec-9-en-1-ol (52 %) and hexadecan-1-ol (31 %) in B. lapidarius, and 2,3-dihydrofarnesol (58 %) and ethyl dodecanoate (15 %) in B. terrestris. The research strategy was based on 1) in vivo incubation of isotopically (2 H, 13 C) modified fatty acids (FAs) and analysis of their metabolites and 2) feeding experiments with 2 H- and 13 C-labelled FAs mixed with food. It was observed that labelled FAs were modified into the most abundant aliphatic compounds present in labial gland secretions. In feeding experiments, the labelled FAs were transformed into pheromone components. Transport of the FA precursors from the fat body through haemolymph was confirmed. The results show that FAs, stored in the form of triacylglycerols in the fat body, are likely to participate in the biosynthesis of some aliphatic pheromone components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...