Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215033, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002701

RESUMO

Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by cytochrome P450 epoxygenation of arachidonic acid, which are metabolized by EPHX2 (epoxide hydrolase 2, alias soluble epoxide hydrolase or sEH). EETs have pleiotropic effects, including anti-inflammatory activity. Using a Connectivity Map (CMAP) approach, we identified an inverse-correlation between an exemplar EPHX2 inhibitor (EPHX2i) compound response and an inflammatory bowel disease patient-derived signature. To validate the gene-disease link, we tested a pre-clinical tool EPHX2i (GSK1910364) in a mouse disease model, where it showed improved outcomes comparable to or better than the positive control Cyclosporin A. Up-regulation of cytoprotective genes and down-regulation of proinflammatory cytokine production were observed in colon samples obtained from EPHX2i-treated mice. Follow-up immunohistochemistry analysis verified the presence of EPHX2 protein in infiltrated immune cells from Crohn's patient tissue biopsies. We further demonstrated that GSK2256294, a clinical EPHX2i, reduced the production of IL2, IL12p70, IL10 and TNFα in both ulcerative colitis and Crohn's disease patient-derived explant cultures. Interestingly, GSK2256294 reduced IL4 and IFNγ in ulcerative colitis, and IL1ß in Crohn's disease specifically, suggesting potential differential effects of GSK2256294 in these two diseases. Taken together, these findings suggest a novel therapeutic use of EPHX2 inhibition for IBD.


Assuntos
Colite/tratamento farmacológico , Cicloexilaminas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Epóxido Hidrolases/antagonistas & inibidores , Doenças Inflamatórias Intestinais/tratamento farmacológico , Triazinas/farmacologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Endogâmicos C57BL
2.
Rheumatology (Oxford) ; 57(7): 1299-1304, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635517

RESUMO

OBJECTIVE: To identify biomarkers of articular and ocular disease activity in patients with Blau syndrome (BS). METHODS: Multiplex plasma protein arrays were performed in five BS patients and eight normal healthy volunteers (NHVs). Plasma S100A12 and S100A8/9 were subsequently measured by ELISA at baseline and 1-year follow-up in all patients from a prospective multicentre cohort study. CRP was measured using Meso Scale Discovery immunoassay. Active joint counts, standardization uveitis nomenclature for anterior uveitis cells and vitreous haze by Nussenblatt scale were the clinical parameters. RESULTS: Multiplex Luminex arrays identified S100A12 as the most significantly elevated protein in five selected BS vs eight NHVs and this was confirmed by ELISA on additional samples from the same five BS patients. In the patient cohort, S100A12 (n = 39) and S100A8/9 (n = 33) were significantly higher compared with NHVs (n = 44 for S100A12, n = 40 for S100A8/9) (P = 0.0000004 and P = 0.0003, respectively). Positive correlations between active joint counts and S100 levels were significant for S100A12 (P = 0.0008) and S100A8/9 (P = 0.015). CRP levels did not correlate with active joint count. Subgroup analysis showed significant association of S100 proteins with active arthritis (S100A12 P = 0.01, S100A8/9 P = 0.008). Active uveitis was not associated with increased S100 levels. CONCLUSION: S100 proteins are biomarkers of articular disease activity in BS and potential outcome measures in future clinical trials. As secreted neutrophil and macrophage products, S100 proteins may reflect the burden of granulomatous tissue in BS.

3.
PLoS One ; 7(8): e42386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870324

RESUMO

Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.


Assuntos
Células Endoteliais/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Receptor 4 Toll-Like/imunologia , Vasculite/imunologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Humanos , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/patologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/metabolismo , Peptidoglicano/imunologia , Peptidoglicano/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptor 4 Toll-Like/metabolismo , Vasculite/metabolismo , Vasculite/patologia , Vasculite/terapia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...