Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 273, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448476

RESUMO

Coastal elevation data are essential for a wide variety of applications, such as coastal management, flood modelling, and adaptation planning. Low-lying coastal areas (found below 10 m +Mean Sea Level (MSL)) are at risk of future extreme water levels, subsidence and changing extreme weather patterns. However, current freely available elevation datasets are not sufficiently accurate to model these risks. We present DeltaDTM, a global coastal Digital Terrain Model (DTM) available in the public domain, with a horizontal spatial resolution of 1 arcsecond (∼30 m) and a vertical mean absolute error (MAE) of 0.45 m overall. DeltaDTM corrects CopernicusDEM with spaceborne lidar from the ICESat-2 and GEDI missions. Specifically, we correct the elevation bias in CopernicusDEM, apply filters to remove non-terrain cells, and fill the gaps using interpolation. Notably, our classification approach produces more accurate results than regression methods recently used by others to correct DEMs, that achieve an overall MAE of 0.72 m at best. We conclude that DeltaDTM will be a valuable resource for coastal flood impact modelling and other applications.

2.
Nature ; 622(7981): 87-92, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794266

RESUMO

Disaster losses are increasing and evidence is mounting that climate change is driving up the probability of extreme natural shocks1-3. Yet it has also proved politically expedient to invoke climate change as an exogenous force that supposedly places disasters beyond the influence of local and national authorities4,5. However, locally determined patterns of urbanization and spatial development are key factors to the exposure and vulnerability of people to climatic shocks6. Using high-resolution annual data, this study shows that, since 1985, human settlements around the world-from villages to megacities-have expanded continuously and rapidly into present-day flood zones. In many regions, growth in the most hazardous flood zones is outpacing growth in non-exposed zones by a large margin, particularly in East Asia, where high-hazard settlements have expanded 60% faster than flood-safe settlements. These results provide systematic evidence of a divergence in the exposure of countries to flood hazards. Instead of adapting their exposure, many countries continue to actively amplify their exposure to increasingly frequent climatic shocks.


Assuntos
Cidades , Inundações , Migração Humana , Urbanização , Ásia Oriental , Cidades/estatística & dados numéricos , Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Migração Humana/estatística & dados numéricos , Migração Humana/tendências , Probabilidade , Urbanização/tendências
3.
Sci Rep ; 13(1): 1683, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717604

RESUMO

Coral reefs offer natural coastal protection by attenuating incoming waves. Here we combine unique coral disturbance-recovery observations with hydrodynamic models to quantify how structural complexity dissipates incoming wave energy. We find that if the structural complexity of healthy coral reefs conditions is halved, extreme wave run-up heights that occur once in a 100-years will become 50 times more frequent, threatening reef-backed coastal communities with increased waves, erosion, and flooding.


Assuntos
Antozoários , Recifes de Corais , Animais , Inundações , Hidrodinâmica , Ecossistema
4.
Nat Commun ; 12(1): 3775, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145274

RESUMO

Climate change and anthropogenic pressures are widely expected to exacerbate coastal hazards such as episodic coastal flooding. This study presents global-scale potential coastal overtopping estimates, which account for not only the effects of sea level rise and storm surge, but also for wave runup at exposed open coasts. Here we find that the globally aggregated annual overtopping hours have increased by almost 50% over the last two decades. A first-pass future assessment indicates that globally aggregated annual overtopping hours will accelerate faster than the global mean sea-level rise itself, with a clearly discernible increase occurring around mid-century regardless of climate scenario. Under RCP 8.5, the globally aggregated annual overtopping hours by the end of the 21st-century is projected to be up to 50 times larger compared to present-day. As sea level continues to rise, more regions around the world are projected to become exposed to coastal overtopping.

5.
Sci Total Environ ; 760: 144310, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341636

RESUMO

Coastal erosion is a major issue facing Europe that will only worsen under future climate change and the resulting sea level rise. One effect of erosion is the loss of ecosystem services, which are provided by coastal areas, such as provisioning, regulating, habitat, and cultural services. These services can be quantified in monetary terms. Here, we present comprehensive estimates of future decline in coastal ecosystem services due to the erosion of sandy coastlines. We used datasets derived from remote sensing products: a pan-European land cover/use dataset (Corine Land Cover) and new global probabilistic coastal erosion projections constrained by artificial and topographical barriers to erosion. The results include historical changes (2000-2018) and projections under two emission scenarios (RCP4.5 and RCP8.5) for 2050 and 2100 together with uncertainty bounds. We estimate that in 2018, the coastal zone (excluding open sea) included 579,700 km2 of habitats generating 494 billion euros of services annually. The future sea-level rise could erode 1.0% [90% confidence interval 0.7-1.5%] of the 2018 area under RCP4.5, and 1.2% [0.7-2.2%] under RCP8.5. The decline in services would be even greater: 4.2% [3.0-6.1%] under RCP4.5, and 5.1% [3.3-8.5%] under RCP8.5. The highest absolute losses would be sustained by salt marshes, while relative losses would be highest in beaches, sands, and dunes. The most affected countries in relative economic terms would be Denmark, Albania, Greece, Estonia, and Finland, but countries such as Germany, the Netherlands, and France would be among those losing the largest share of their coastal ecosystem services. Regional analysis using NUTS 3 regions shows high diversity of the impacts, with many regions along the North Sea and eastern Mediterranean Sea that are heavily affected by coastal erosion-induced loss of ecosystem services. The study highlights the urgency of undertaking mitigation actions.

6.
Commun Earth Environ ; 1(1): 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33196054

RESUMO

Compound flooding arises from storms causing concurrent extreme meteorological tides (that is the superposition of storm surge and waves) and precipitation. This flooding can severely affect densely populated low-lying coastal areas. Here, combining output from climate and ocean models, we analyse the concurrence probability of the meteorological conditions driving compound flooding. We show that, under a high emissions scenario, the concurrence probability would increase globally by more than 25% by 2100 compared to present. In latitudes above 40o north, compound flooding could become more than 2.5 times as frequent, in contrast to parts of the subtropics where it would weaken. Changes in extreme precipitation and meteorological tides account for most (77% and 20%, respectively) of the projected change in concurrence probability. The evolution of the dependence between precipitation and meteorological tide dominates the uncertainty in the projections. Our results indicate that not accounting for these effects in adaptation planning could leave coastal communities insufficiently protected against flooding.

7.
Sci Rep ; 10(1): 11895, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681080

RESUMO

Sea level rise (SLR) will cause shoreline retreat of sandy coasts in the absence of sand supply mechanisms. These coasts have high touristic and ecological value and provide protection of valuable infrastructures and buildings to storm impacts. So far, large-scale assessments of shoreline retreat use specific datasets or assumptions for the geophysical representation of the coastal system, without any quantification of the effect that these choices might have on the assessment. Here we quantify SLR driven potential shoreline retreat and consequent coastal land loss in Europe during the twenty-first century using different combinations of geophysical datasets for (a) the location and spatial extent of sandy beaches and (b) their nearshore slopes. Using data-based spatially-varying nearshore slope data, a European averaged SLR driven median shoreline retreat of 97 m (54 m) is projected under RCP 8.5 (4.5) by year 2100, relative to the baseline year 2010. This retreat would translate to 2,500 km2 (1,400 km2) of coastal land loss (in the absence of ambient shoreline changes). A variance-based global sensitivity analysis indicates that the uncertainty associated with the choice of geophysical datasets can contribute up to 45% (26%) of the variance in coastal land loss projections for Europe by 2050 (2100). This contribution can be as high as that associated with future mitigation scenarios and SLR projections.

8.
Nat Commun ; 11(1): 2119, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371866

RESUMO

Extreme sea levels (ESLs) in Europe could rise by as much as one metre or more by the end of this century due to climate change. This poses significant challenges to safeguard coastal communities. Here we present a comprehensive analysis of economically efficient protection scenarios along Europe's coastlines during the present century. We employ a probabilistic framework that integrates dynamic simulations of all ESL components and flood inundation, impact modelling and a cost-benefit analysis of raising dykes. We find that at least 83% of flood damages in Europe could be avoided by elevating dykes in an economically efficient way along 23.7%-32.1% of Europe's coastline, specifically where high value conurbations exist. The European mean benefit to cost ratio of the investments varies from 8.3 to 14.9 while at country level this ranges between 1.6 and 34.3, with higher efficiencies for a scenario with high-end greenhouse gas emissions and strong socio-economic growth.

9.
Sci Total Environ ; 710: 136162, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31918185

RESUMO

OBJECTIVE: This study tests the impacts of Digital Elevation Model (DEM) data on an exposure assessment methodology developed to quantify flooding of coastal infrastructure from storms and sea level rise on a regional scale. The approach is piloted on the United States Virgin Islands (USVI) for a one-hundred-year storm event in 2050 under the IPCC's 8.5 emission scenario (RCP 8,5). METHOD: Flooding of individual infrastructure was tested against three different digital elevation models using a GIS-based coastal infrastructure database created specifically for the project using aerial images. Inundation for extreme sea levels is based on dynamic simulations using Lisflood-ACC (LFP). RESULTS: The model indicates transport and utility infrastructure in the USVI are considerably exposed to sea level rise and modeled storm impacts from climate change. Prediction of flood extent was improved with a neural network processed SRTM, versus publicly available SRTM (~30 m) seamless C-band DEM but both SRTM based models underestimate flooding compared to LIDAR DEM. The modeled scenario, although conservative, showed significant flood exposure to a large number of access roads to facilities, 113/176 transportation related buildings, and 29/66 electric utility and water treatment buildings including six electric power transformers and six waste water treatment clarifiers. CONCLUSION: The method bridges a gap between large-scale non-specific flood assessments and single-facility detailed assessments and can be used to efficiently quantify and prioritize parcels and large structures in need of further assessment for regions that lack detailed data to assess climate exposure to sea level rise and flooding caused by waves. The method should prove particularly useful for assessment of Small Island Developing State regions that lack LIDAR data, such as the Caribbean.

10.
Sci Rep ; 8(1): 12876, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150698

RESUMO

Changes in coastal morphology have broad consequences for the sustainability of coastal communities, structures and ecosystems. Although coasts are monitored locally in many places, understanding long-term changes at a global scale remains a challenge. Here we present a global and consistent evaluation of coastal morphodynamics over 32 years (1984-2015) based on satellite observations. Land losses and gains were estimated from the changes in water presence along more than 2 million virtual transects. We find that the overall surface of eroded land is about 28,000 km2, twice the surface of gained land, and that often the extent of erosion and accretion is in the order of km. Anthropogenic factors clearly emerge as the dominant driver of change, both as planned exploitation of coastal resources, such as building coastal structures, and as unforeseen side effects of human activities, for example the installment of dams, irrigation systems and structures that modify the flux of sediments, or the clearing of coastal ecosystems, such as mangrove forests. Another important driver is the occurrence of natural disasters such as tsunamis and extreme storms. The observed global trend in coastal erosion could be enhanced by Sea Level Rise and more frequent extreme events under a changing climate.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Algoritmos , Ecossistema , Humanos , Modelos Teóricos , Imagens de Satélites
11.
Nat Commun ; 9(1): 2360, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915265

RESUMO

Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34-76 cm under a moderate-emission-mitigation-policy scenario and of 58-172 cm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...