Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430594

RESUMO

Instantaneous frequency (IF) is commonly used in the analysis of electroencephalogram (EEG) signals to detect oscillatory-type seizures. However, IF cannot be used to analyze seizures that appear as spikes. In this paper, we present a novel method for the automatic estimation of IF and group delay (GD) in order to detect seizures with both spike and oscillatory characteristics. Unlike previous methods that use IF alone, the proposed method utilizes information obtained from localized Rényi entropies (LREs) to generate a binary map that automatically identifies regions requiring a different estimation strategy. The method combines IF estimation algorithms for multicomponent signals with time and frequency support information to improve signal ridge estimation in the time-frequency distribution (TFD). Our experimental results indicate the superiority of the proposed combined IF and GD estimation approach over the IF estimation alone, without requiring any prior knowledge about the input signal. The LRE-based mean squared error and mean absolute error metrics showed improvements of up to 95.70% and 86.79%, respectively, for synthetic signals and up to 46.45% and 36.61% for real-life EEG seizure signals.


Assuntos
Eletroencefalografia , Registros , Humanos , Algoritmos , Benchmarking , Convulsões/diagnóstico
2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447655

RESUMO

Time-frequency signal processing offers a significant advantage over temporal or frequency-only methods, but representations require optimisation for a given signal. Standard practice includes choosing the appropriate time-frequency distribution and fine-tuning its parameters, usually via visual inspection and various measures-the most commonly used ones are based on the Rényi entropies or energy concentration by Stankovic. However, a discrepancy between the observed representation quality and reported numerical value may arise when the filter kernel has greater adaptability. Herein, a performance measure derived from the Abbot-Firestone curve similar to the volume parameters in surface metrology is proposed as the objective function to be minimised by the proposed minimalistic differential evolution variant that is parameter-free and uses a population of five members. Tests were conducted on two synthetic signals of different frequency modulations and one real-life signal. The multiform tiltable exponential kernel was optimised according to the Rényi entropy, Stankovic's energy concentration and the proposed measure. The resulting distributions were mutually evaluated using the same measures and visual inspection. The optimiser demonstrated a reliable convergence for all considered measures and signals, while the proposed measure showed consistent alignment of reported numerical values and visual assessments.


Assuntos
Processamento de Sinais Assistido por Computador , Entropia
3.
Sensors (Basel) ; 23(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112488

RESUMO

Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection, which extracts the magnitude-significant AF samples through a clustering approach using the density-based spatial clustering algorithm. Moreover, an appropriate criterion for the performance of the method is formalized, i.e., component concentration and preservation, as well as interference suppression, are measured utilizing the information obtained from the short-term and the narrow-band Rényi entropies, while component connectivity is evaluated using the number of regions with continuously-connected samples. The CS-AF area selection and reconstruction algorithm parameters are optimized using an automatic multi-objective meta-heuristic optimization method, minimizing the here-proposed combination of measures as objective functions. Consistent improvement in CS-AF area selection and TFD reconstruction performance has been achieved without requiring a priori knowledge of the input signal for multiple reconstruction algorithms. This was demonstrated for both noisy synthetic and real-life signals.

4.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236654

RESUMO

In this article, we perform a case study of the impact of photobiomodulation (PBM) on brain power spectrum and connectivity in an elderly person with a Self Administered Gerocognitive Exam (SAGE) score indicating probable memory and thinking disorder. First, we designed and realized the prototype of a near-infrared (NIR) device for PBM. Analysing the alpha band of the power spectrum, we found a positive long-term effect in nine out of sixteen electrodes in the eyes-open condition (OE) and in twelve out of sixteen electrodes in the eyes-closed condition (CE), while in the theta band, a positive long-term effect was found in nine out of sixteen electrodes for OE and seven out of sixteen electrodes for CE. When considering the theta-alpha ratio (TAR), the positive long-term effect is found on thirteen of sixteen electrodes for OE and on fourteen of sixteen electrodes for CE. A connectivity analysis using the imaginary component of the complex Pearson correlation coefficient (imCPCC) was also performed, and a global efficiency measure based on connectivity matrices with thresholds was calculated. The global efficiency calculated for the long-term effect was higher than before stimulation by a factor of 5.24 for the OE condition and by a factor of 1.25 for the CE condition. This case study suggests that PBM could have positive effects on improving desired brain activity, measured as improvement in power spectrum and connectivity measures in theta and alpha bands, for elderly people with memory and thinking disorders.


Assuntos
Encéfalo , Demência , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico , Demência/terapia , Eletroencefalografia , Humanos
5.
Sensors (Basel) ; 22(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35890842

RESUMO

In this paper, we propose a new method to study and evaluate the time-varying brain network dynamics. The proposed RICI-imCPCC method (relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient) is based on an adaptive window size and the imaginary part of the complex Pearson correlation coefficient. It reduces the weaknesses of the existing method of constant sliding window analysis with narrow and wide windows. These are the low temporal precision and low reliability for short connectivity periods for wide windows, and high susceptibility to noise for narrow windows, all resulting in low estimation accuracy. The proposed method overcomes these shortcomings by dynamically adjusting the window width using the RICI rule, which is based on the statistical properties of the area around the observed sample. In this paper, we compare the RICI-imCPCC with the existing constant sliding window analysis method and describe its advantages. First, the mathematical principles are established. Then, the comparison between the existing and the proposed method using synthetic and real electroencephalography (EEG) data is presented. The results show that the proposed RICI-imCPCC method has improved temporal resolution and estimation accuracy compared to the existing method and is less affected by the noise. The estimation error energy calculated for the RICI-imCPCC method on synthetic signals was lower by a factor of 1.22 compared to the error of the constant sliding window analysis using narrow window size imCPCC, by a factor of 2.87 compared to using wide window size imCPCC, by a factor of 6.69 compared to using narrow window size wPLI, and by a factor of 4.72 compared to using wide window size wPLI. Analysis of the real signals shows the ability of the proposed method to detect a P300 response and to detect a decrease in dynamic connectivity due to desynchronization and blockage of mu-rhythms.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Correlação de Dados , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
6.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214379

RESUMO

In the background of all human thinking-acting and reacting are sets of connections between different neurons or groups of neurons. We studied and evaluated these connections using electroencephalography (EEG) brain signals. In this paper, we propose the use of the complex Pearson correlation coefficient (CPCC), which provides information on connectivity with and without consideration of the volume conduction effect. Although the Pearson correlation coefficient is a widely accepted measure of the statistical relationships between random variables and the relationships between signals, it is not being used for EEG data analysis. Its meaning for EEG is not straightforward and rarely well understood. In this work, we compare it to the most commonly used undirected connectivity analysis methods, which are phase locking value (PLV) and weighted phase lag index (wPLI). First, the relationship between the measures is shown analytically. Then, it is illustrated by a practical comparison using synthetic and real EEG data. The relationships between the observed connectivity measures are described in terms of the correlation values between them, which are, for the absolute values of CPCC and PLV, not lower that 0.97, and for the imaginary component of CPCC and wPLI-not lower than 0.92, for all observed frequency bands. Results show that the CPCC includes information of both other measures balanced in a single complex-numbered index.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Correlação de Dados , Eletroencefalografia/métodos , Humanos , Idioma , Neurônios
7.
IEEE Trans Image Process ; 19(8): 1987-2004, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20236896

RESUMO

In this paper, we propose novel adaptive wavelet filter bank structures based on the lifting scheme. The filter banks are nonseparable, based on quincunx sampling, with their properties being pixel-wise adapted according to the local image features. Despite being adaptive, the filter banks retain a desirable number of primal and dual vanishing moments. The adaptation is introduced in the predict stage of the filter bank with an adaptation region chosen independently for each pixel, based on the intersection of confidence intervals (ICI) rule. The image denoising results are presented for both synthetic and real-world images. It is shown that the obtained wavelet decompositions perform well, especially for synthetic images that contain periodic patterns, for which the proposed method outperforms the state of the art in image denoising.


Assuntos
Algoritmos , Compressão de Dados/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...