Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366053

RESUMO

This paper discusses how the assembly of pro-caspase-1 and apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) in macromolecular protein complexes, inflammasomes, activates caspase-1. The present study investigates the molecular mechanisms of inflammasome activation in HepG2 cells and examines how short exposures to ethanol (EtOH) affect inflammasome activation. HepG2 cells were treated with lipopolysaccharide (LPS), ATP or nigericin (NIG) in a two-step model. After LPS priming, ATP or NIG were added. As inhibitors, sodium orthovanadate (general inhibitor of tyrosine phosphatases), AC-YVAD-CMK (caspase-1 inhibitor) or AZ10606120 (purinergic receptor P2X7R inhibitor) were applied after LPS priming. To monitor the inflammasome activation, the caspase-1 activity, ASC speck formation, reactive oxygen species (ROS) production and cell death were analyzed. To elucidate the mechanistical approach of EtOH to the inflammasome assembly, the cells were treated with EtOH either under simultaneous LPS administration or concurrently with ATP or NIG application. The co-stimulation with LPS and ATP induced a significant ASC speck formation, caspase-1 activation, cell death and ROS generation. The inhibition of the ATP-dependent purinoreceptor P2X7 decreased the caspase-1 activation, whereas sodium orthovanadate significantly induced caspase-1. Additional treatment with EtOH reversed the LPS and ATP-induced caspase-1 activation, ASC speck formation and ROS production. The ASC speck formation and caspase-1 induction require a two-step signaling with LPS and ATP in HepG2 cells. Inflammasome activation may depend on P2X7. The molecular pathway of an acute effect of EtOH on inflammasomes may involve a reduction in ROS generation, which in turn may increase the activity of tyrosine phosphatases.


Assuntos
Caspase 1/metabolismo , Etanol/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Aminoquinolinas/farmacologia , Células Hep G2 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vanadatos/farmacologia
2.
J Clin Med ; 9(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276346

RESUMO

OBJECTIVE: Severely injured patients frequently develop an immunological imbalance following the traumatic insult, which might result in infectious complications evoked by a persisting immunosuppression. Regulatory T cells (Tregs) maintain the immune homeostasis by suppressing proinflammatory responses, however, their functionality after trauma is unclear. Here, we characterized the role of Tregs in regulating the proliferation of CD4+ lymphocytes in traumatized patients (TP). METHODS: Peripheral blood was obtained daily from 29 severely injured TP (Injury Severity Score, ISS ≥16) for ten days following admission to the emergency department (ED). Ten healthy volunteers (HV) served as controls. The frequency and activity of Tregs were assessed by flow cytometry. Proliferation of CD4+ cells was analyzed either in presence or absence of Tregs, or after blocking of either IL-10 or IL-10R1. RESULTS: The frequencies of CD4+CD25high and CD4+CD25+CD127- Tregs were significantly decreased immediately upon admission of TP to the ED and during the following 10 post-injury days. Compared with HV CD4+ T cell proliferation in TP increased significantly upon their admission and on the following days. As expected, CD4+CD25+CD127- Tregs reduced the proliferation of CD4+ cells in HV, nevertheless, CD4+ proliferation in TP was increased by Tregs. Neutralization of IL-10 as well as blocking the IL-10R1 increased further CD4+ T cell proliferation in Tregs-depleted cultures, thereby confirming an IL-10-mediated mechanism of IL-10-regulated CD4+ T cell proliferation. Neutralization of IL-10 in TP decreased CD4+ T cell proliferation in Tregs-depleted cultures, whereas blocking of the IL-10R1 receptor had no significant effects. CONCLUSIONS: The frequency of Tregs in the CD4+ T lymphocyte population is reduced after trauma; however, their inductiveness is increased. The mechanisms of deregulated influence of Tregs on CD4+ T cell proliferation are mediated via IL-10 but not via the IL-10R1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...