Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 121: 331-342, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412464

RESUMO

To ensure a circular economy for plastics, insights in the environmental impacts of recycling and optimal recycling choices for specific plastic polymers are crucial. This was obtained by determining the environmental performance of 10 selected recycling technologies with varying TRL levels, using the chemical properties of the top 25 produced polymers in Europe. The results were collected in a life cycle assessment (LCA) 'matrix' model. To simulate realistic plastic recycling challenges, case studies of PE/PP foils from municipal waste and ABS plastic with brominated flame retardants were developed, to be used as an addition to the LCA matrix model results. Potential emission reduction was assessed by combining LCA matrix outcomes with European polymer demand data. The LCA matrix model illustrates that potential environmental performance of recycling technologies varied strongly per polymer type and did not always follow the state-of-the-art recycling hierarchy. Commodity plastics performed well with tertiary recycling technologies, such as gasification and pyrolysis to monomers; secondary mechanical recycling was outperformed. A focus on primary recycling is environmentally beneficial for most engineering and high performance plastics. To enhance the performance of primary recycling technologies, a higher purity and improved sorting is required. As demonstrated in the case studies, low sorting efficiencies due to impurities reduces positive environmental impacts. Hence, optimal environmental performance of recycling is obtained where pre-treatment (sorting, cleaning) is adapted to the recycling technology. According to the model, recycling the 15 most demanded polymers in Europe reduces CO2 emissions from plastics by 73% or 200 Mtonne CO2 eq.


Assuntos
Retardadores de Chama , Plásticos , Europa (Continente) , Polímeros , Reciclagem
3.
Phys Life Rev ; 18: 1-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27291090

RESUMO

This paper proposes an essay concerning the understanding of human behaviours and crisis management of crowds in extreme situations, such as evacuation through complex venues. The first part focuses on the understanding of the main features of the crowd viewed as a living, hence complex system. The main concepts are subsequently addressed, in the second part, to a critical analysis of mathematical models suitable to capture them, as far as it is possible. Then, the third part focuses on the use, toward safety problems, of a model derived by the methods of the mathematical kinetic theory and theoretical tools of evolutionary game theory. It is shown how this model can depict critical situations and how these can be managed with the aim of minimizing the risk of catastrophic events.


Assuntos
Comportamento , Aglomeração , Informática/métodos , Modelos Teóricos , Teoria dos Jogos , Humanos , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...