Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell Mol Life Sci ; 81(1): 281, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940922

RESUMO

As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Venenos de Artrópodes , Mariposas , Pele/metabolismo , Pele/patologia , Larva/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522727

RESUMO

Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases. However, in around 25 % of patients, rare nonsynonymous coding variants in genes encoding ion channels, cell-surface receptors, and other neuronally expressed proteins are identified. This review focuses on a subgroup of DEE patients carrying variations in the gene encoding the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel, where recent data indicate that gain-of-function of TRPM3 channel activity underlies a spectrum of dominant neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Animais , Mutação
3.
Adv Sci (Weinh) ; 11(7): e2307554, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037844

RESUMO

Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.


Assuntos
Células Endoteliais , Via de Sinalização Wnt , Humanos , Diferenciação Celular/fisiologia , Ciclo Celular , Perfilação da Expressão Gênica
4.
Pain ; 164(9): 2060-2069, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079852

RESUMO

ABSTRACT: Chemotherapy-induced peripheral neuropathic pain (CIPNP) is an adverse effect observed in up to 80% of patients of cancer on treatment with cytostatic drugs including paclitaxel and oxaliplatin. Chemotherapy-induced peripheral neuropathic pain can be so severe that it limits dose and choice of chemotherapy and has significant negative consequences on the quality of life of survivors. Current treatment options for CIPNP are limited and unsatisfactory. TRPM3 is a calcium-permeable ion channel functionally expressed in peripheral sensory neurons involved in the detection of thermal stimuli. Here, we focus on the possible involvement of TRPM3 in acute oxaliplatin-induced mechanical allodynia and cold hypersensitivity. In vitro calcium microfluorimetry and whole-cell patch-clamp experiments showed that TRPM3 is functionally upregulated in both heterologous and homologous expression systems after acute (24 hours) oxaliplatin treatment, whereas the direct application of oxaliplatin was without effect. In vivo behavioral studies using an acute oxaliplatin model for CIPNP showed the development of cold and mechano hypersensitivity in control mice, which was lacking in TRPM3 deficient mice. In addition, the levels of protein ERK, a marker for neuronal activity, were significantly reduced in dorsal root ganglion neurons derived from TRPM3 deficient mice compared with control after oxaliplatin administration. Moreover, intraperitoneal injection of a TRPM3 antagonist, isosakuranetin, effectively reduced the oxaliplatin-induced pain behavior in response to cold and mechanical stimulation in mice with an acute form of oxaliplatin-induced peripheral neuropathy. In summary, TRPM3 represents a potential new target for the treatment of neuropathic pain in patients undergoing chemotherapy.


Assuntos
Antineoplásicos , Neuralgia , Canais de Cátion TRPM , Animais , Camundongos , Antineoplásicos/efeitos adversos , Cálcio/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Oxaliplatina/efeitos adversos
5.
Reprod Biol Endocrinol ; 21(1): 37, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060079

RESUMO

BACKGROUND: Early embryo implantation is a complex phenomenon characterized by the presence of an implantation-competent blastocyst and a receptive endometrium. Embryo development and endometrial receptivity must be synchronized and an adequate two-way dialogue between them is necessary for maternal recognition and implantation. Proteases have been described as blastocyst-secreted proteins involved in the hatching process and early implantation events. These enzymes stimulate intracellular calcium signaling pathways in endometrial epithelial cells (EEC). However, the exact molecular players underlying protease-induced calcium signaling, the subsequent downstream signaling pathways and the biological impact of its activation remain elusive. METHODS: To identify gene expression of the receptors and ion channels of interest in human and mouse endometrial epithelial cells, RNA sequencing, RT-qPCR and in situ hybridization experiments were conducted. Calcium microfluorimetric experiments were performed to study their functional expression. RESULTS: We showed that trypsin evoked intracellular calcium oscillations in EEC of mouse and human, and identified the protease-activated receptor 2 (PAR2) as the molecular entity initiating protease-induced calcium responses in EEC. In addition, this study unraveled the molecular players involved in the downstream signaling of PAR2 by showing that depletion and re-filling of intracellular calcium stores occurs via PLC, IP3R and the STIM1/Orai1 complex. Finally, in vitro experiments in the presence of a specific PAR2 agonist evoked an upregulation of the 'Window of implantation' markers in human endometrial epithelial cells. CONCLUSIONS: These findings provide new insights into the blastocyst-derived protease signaling and allocate a key role for PAR2 as maternal sensor for signals released by the developing blastocyst.


Assuntos
Sinalização do Cálcio , Receptor PAR-2 , Feminino , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Peptídeo Hidrolases/metabolismo , Cálcio/metabolismo , Endométrio/metabolismo , Blastocisto/fisiologia , Implantação do Embrião/fisiologia , Células Epiteliais/metabolismo
6.
Epilepsia ; 64(5): e61-e68, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929095

RESUMO

Developmental and epileptic encephalopathy with continuous spike-and-wave activation in sleep (CSWS) or DEE-SWAS is an age-dependent disease, often accompanied by a decline in cognitive abilities. Early successful treatment of CSWS is associated with a better cognitive outcome. We retrospectively analyzed the clinical, electrophysiological, radiological, and genetic data of children with DEE-SWAS associated with melastatin-related transient receptor type 3 gene (TRPM3) missense variants. We report two unrelated children with pharmacoresistant DEE-SWAS and developmental delay/regression and different heterozygous de novo missense variants in the TRPM3 gene (NM_001366145.2; c.3397 T > C/p.Ser1133Pro, c.2004G > A/p.Val1002Met). The variant p.Val1002Met (previously known as p.Val990Met or p.Val837Met) and p.Ser1133Pro were recently shown to result in a gain-of-function effect. Based on this finding, previous drug resistance, and the experimentally demonstrated inhibitory effect of primidone on TRPM3, we initiated an individualized therapy with this drug. In both children, developmental regression was stopped, psychomotor development improved, and CSWS was no longer detectable. To our knowledge, this is the first report of a treatment with primidone in TRPM3-associated CSWS. Our results highlight the importance of early genetic diagnosis in patients with epilepsy and the possibility of precision medicine, which should be considered in the future in individuals with a TRPM3-linked DEE-SWAS.


Assuntos
Anticonvulsivantes , Epilepsia , Primidona , Humanos , Feminino , Primidona/administração & dosagem , Epilepsia/tratamento farmacológico , Estudos Retrospectivos , Células HEK293 , Eletroencefalografia , Anticonvulsivantes/administração & dosagem , Masculino , Pré-Escolar , Criança
7.
Gynecol Obstet Invest ; 88(2): 108-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36739858

RESUMO

OBJECTIVES: The objective of this study was to examine the prevalence of chronic endometritis (CE) in infertile women, its impact on reproductive outcomes, and the accuracy of hysteroscopy as a screening tool for CE. DESIGN: This was a prospective observational study. PARTICIPANTS: Participants involved in this study were 514 asymptomatic patients with infertility. SETTING: The review was conducted in a tertiary care center. METHODS: The participants underwent a hysteroscopy and endometrial biopsy (EMB). Antibiotics were given for cases of CE. We investigated the prevalence of CE in patients starting assisted reproductive technologies (ART) as a primary outcome. Secondary outcomes were the clinical pregnancy rate (CPR) in the ART cycle after hysteroscopy, EMB, and antibiotic treatment in cases of CE; the cumulative CPR in the subsequent 2 years after hysteroscopy and EMB; the sensitivity and specificity of hysteroscopy as a screening tool compared to EMB as the "gold standard" for diagnosing CE. RESULTS: CE was identified in 2.8% of patients starting ART (11/393). CPRs did not differ significantly between patients with CE and the entire cohort of patients without CE in the subsequent ART cycle (OR: 0.43; 95% CI: 0.09-2.02) or in the 2 years after EMB (OR: 0.56; 95% CI: 0.16-1.97). In a matched control comparison (with matching for age, basal FSH, and cause of infertility), CPR in patients with CE did not differ in the subsequent ART cycle (OR: 0.39; 95% CI: 0.09-1.61); however, their CPR in the 2 years after EMB was significantly lower (OR: 0.22; 95% CI: 0.13-0.38). The sensitivity and specificity of hysteroscopy as a screening tool for diagnosing CE were 8.3% and 90.1%, respectively. LIMITATIONS: Due to our cohort's low CE prevalence, we could not detect significant differences in CPRs. CONCLUSION: CE is rare in our studied population of asymptomatic patients starting ART. Hysteroscopy cannot replace EMB for diagnosing CE.


Assuntos
Endometrite , Histeroscopia , Infertilidade Feminina , Feminino , Humanos , Gravidez , Doença Crônica , Endometrite/diagnóstico , Endometrite/epidemiologia , Endometrite/patologia , Endométrio/patologia , Histeroscopia/efeitos adversos , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/epidemiologia , Infertilidade Feminina/etiologia , Prevalência , Reprodução , Estudos Prospectivos
8.
ACS Chem Biol ; 18(3): 456-464, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36762958

RESUMO

TRPM3 is an ion channel that is highly expressed in nociceptive neurons and plays a key role in pain perception. In the presence of the endogenous TRPM3 ligand, pregnenolone sulfate (PS), the antifungal compound clotrimazole (Clt) augments Ca2+ signaling and opens a non-canonical pore, permeable to Na+, which aggravates TRPM3-induced pain. To date, little is known about structural features that govern the Clt modulatory effect of TRPM3. Here, we synthesized and evaluated several Clt analogues in order to gain insights into their structure-activity relationship. Our results reveal a tight SAR with the three phenyl rings on the trityl moiety being essential for the activity, as well as the presence of fluorine or chlorine substituents on the trityl group. Imidazole as a heterocycle is also necessary for activity. Interestingly, we identified a pentafluoro-trityl analogue (29a) that is able to act as a TRPM3 agonist in the absence of PS. The compounds we report in this work will be useful tools for the further study of TRPM3 modulation and its effect on pain perception.


Assuntos
Clotrimazol , Canais de Cátion TRPM , Humanos , Clotrimazol/farmacologia , Canais de Cátion TRPM/metabolismo , Dor , Relação Estrutura-Atividade
9.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648066

RESUMO

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Neuroesteroides , Canais de Cátion TRPM , Animais , Humanos , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Canais Iônicos/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Mamíferos/metabolismo
10.
Eur J Pharmacol ; 928: 175086, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35714693

RESUMO

The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Animais , Astemizol/farmacologia , Benzimidazóis/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio , Proliferação de Células , Células HEK293 , Antagonistas dos Receptores Histamínicos , Humanos , Loratadina/farmacologia , Camundongos , Células Estromais , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
11.
Cells ; 11(7)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406807

RESUMO

Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling.


Assuntos
Cistinose , Podócitos , Cistina/metabolismo , Cistinose/metabolismo , Humanos , Rim/patologia , Podócitos/metabolismo , Células-Tronco/metabolismo
12.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35146895

RESUMO

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Assuntos
Epilepsia , Doenças do Recém-Nascido , Deficiência Intelectual , Canais de Cátion TRPM , Criança , Deficiências do Desenvolvimento/genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Mutação de Sentido Incorreto , Canais de Cátion TRPM/genética , Sequenciamento do Exoma
13.
Br J Pharmacol ; 179(14): 3560-3575, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780479

RESUMO

BACKGROUND AND PURPOSE: Transient receptor potential melastatin 3 (TRPM3) is a non-selective cation channel that plays a pivotal role in the peripheral nervous system as a transducer of painful heat signals. Alternative splicing gives rise to several TRPM3 variants. The functional consequences of these splice isoforms are poorly understood. Here, the pharmacological properties of TRPM3 variants arising from alternative splicing in the pore-forming region were compared. EXPERIMENTAL APPROACH: Calcium microfluorimetry and patch clamp recordings were used to compare the properties of heterologously expressed TRPM3α1 (long pore variant) and TRPM3α2-α6 (short pore variants). Furthermore, site-directed mutagenesis was done to investigate the influence of the length of the pore loop on the channel function. KEY RESULTS: All short pore loop TRPM3α variants (TRPM3α2-α6) were activated by the neurosteroid pregnenolone sulphate (PS) and by nifedipine, whereas the long pore loop variant TRPM3α1 was insensitive to either compound. In contrast, TRPM3α1 was robustly activated by clotrimazole, a compound that does not directly activate the short pore variants but potentiates their responses to PS. Clotrimazole-activated TRPM3α1 currents were largely insensitive to established TRPM3α2 antagonists and were only partially inhibited upon activation of the µ opioid receptor. Finally, by creating a set of mutant channels with pore loops of intermediate length, we showed that the length of the pore loop dictates differential channel activation by PS and clotrimazole. CONCLUSION AND IMPLICATIONS: Alternative splicing in the pore-forming region of TRPM3 defines the channel's pharmacological properties, which depend critically on the length of the pore-forming loop. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Assuntos
Canais de Cátion TRPM , Processamento Alternativo , Cálcio/metabolismo , Clotrimazol , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPM/metabolismo
14.
Cell Mol Life Sci ; 79(1): 26, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936030

RESUMO

Transient receptor potential (TRP) channels excel in cellular sensing as they allow rapid ion influx across the plasma membrane in response to a variety of extracellular cues. Recently, a distinct TRP mRNA expression signature was observed in stromal cells (ESC) and epithelial cells (EEC) of the endometrium, a tissue in which cell phenotypic plasticity is essential for normal functioning. However, it is unknown whether TRP channel mRNA expression is subject to the phenotypic switching that occurs during epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET), and whether TRP channel mRNA expression is associated with aggressive phenotypes in endometrial cancer (EC). Here, we induced EMT and MET in vitro using in primary EEC and ESC, respectively, and analyzed expression and functionality of TRP channels using RT-qPCR and intracellular Ca2+ imaging. The outcome of these experiments showed a strong association between TRPV2 and TRPC1 mRNA expression and the mesenchymal phenotype, whereas TRPM4 mRNA expression correlated with the epithelial phenotype. In line herewith, increased TRPV2 and TRPC1 mRNA expression levels were observed in both primary and metastatic EC biopsies and in primary EC cells with a high EMT status, indicating an association with an aggressive tumor phenotype. Remarkably, TRPV2 mRNA expression in primary EC biopsies was associated with tumor invasiveness and cancer stage. In contrast, increased TRPM4 mRNA expression was observed in EC biopsies with a low EMT status and less aggressive tumor phenotypes. Taken together, this dataset proved for the first time that TRP channel mRNA expression is strongly linked to cellular phenotypes of the endometrium, and that phenotypic transitions caused by either experimental manipulation or malignancy could alter this expression in a predictable manner. These results implicate that TRP channels are viable biomarkers to identify high-risk EC, and potential targets for EC treatment.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal , Canais de Potencial de Receptor Transitório/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Canais de Potencial de Receptor Transitório/genética
15.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948452

RESUMO

Sex hormone steroidal drugs were reported to have modulating actions on the ion channel TRPM3. Pregnenolone sulphate (PS) presents the most potent known endogenous chemical agonist of TRPM3 and affects several gating modes of the channel. These includes a synergistic action of PS and high temperatures on channel opening and the PS-induced opening of a noncanonical pore in the presence of other TRPM3 modulators. Moreover, human TRPM3 variants associated with neurodevelopmental disease exhibit an increased sensitivity for PS. However, other steroidal sex hormones were reported to influence TRPM3 functions with activating or inhibiting capacity. Here, we aimed to answer how DHEAS, estradiol, progesterone and testosterone act on the various modes of TRPM3 function in the wild-type channel and two-channel variants associated with human disease. By means of calcium imaging and whole-cell patch clamp experiments, we revealed that all four drugs are weak TRPM3 agonists that share a common steroidal interaction site. Furthermore, they exhibit increased activity on TRPM3 at physiological temperatures and in channels that carry disease-associated mutations. Finally, all steroids are able to open the noncanonical pore in wild-type and DHEAS also in mutant TRPM3. Collectively, our data provide new valuable insights in TRPM3 gating, structure-function relationships and ligand sensitivity.


Assuntos
Sulfato de Desidroepiandrosterona/farmacologia , Estradiol/farmacologia , Progesterona/farmacologia , Canais de Cátion TRPM/metabolismo , Testosterona/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Sulfato de Desidroepiandrosterona/química , Estradiol/química , Células HEK293 , Humanos , Estrutura Molecular , Mutação , Progesterona/química , Relação Estrutura-Atividade , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Temperatura , Testosterona/química , Regulação para Cima
16.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360952

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Neoplasias/patologia , Transdução de Sinais , Canais de Potencial de Receptor Transitório/classificação , Canais de Potencial de Receptor Transitório/genética
17.
Cell Mol Life Sci ; 78(11): 4993-5014, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33884443

RESUMO

Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal-fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5-E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.


Assuntos
Placenta/metabolismo , Placentação/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/genética , Trofoblastos/citologia , Trofoblastos/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118950, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421536

RESUMO

Calcium (Ca2+) is one of the most universal secondary messengers, owing its success to the immense concentration gradient across the plasma membrane. Dysregulation of Ca2+ homeostasis can result in severe cell dysfunction, thereby initiating several pathologies like tumorigenesis and fibrosis. Transient receptor potential (TRP) channels represent a superfamily of Ca2+-permeable ion channels that convey diverse physical and chemical stimuli into a physiological signal. Their broad expression pattern and gating promiscuity support their potential involvement in the cellular response to an altering environment. Growth factors (GF) are essential biochemical messengers that contribute to these environmental changes. Since Ca2+ is essential in GF signaling, altering TRP channel expression or function could be a valid strategy for GF to exert their effect onto their target. In this review, a comprehensive understanding of the current knowledge regarding the activation and/or modulation of TRP channels by GF is presented.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sinalização do Cálcio , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos
19.
Biochem Pharmacol ; 183: 114310, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130130

RESUMO

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Assuntos
Nociceptividade/fisiologia , Prurido/induzido quimicamente , Prurido/metabolismo , Canais de Cátion TRPM/deficiência , Animais , Capsaicina/toxicidade , Endotelina-1/toxicidade , Histamina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canais de Cátion TRPM/antagonistas & inibidores
20.
Annu Rev Pharmacol Toxicol ; 61: 655-677, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976736

RESUMO

Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.


Assuntos
Dor Crônica , Canais de Potencial de Receptor Transitório , Humanos , Neurônios , Nociceptividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...