Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 89(1-3): 203-13, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11770748

RESUMO

Three-dimensional atom-probe (3DAP) microscopy has been applied to the study of segregation at ceramic/metal (C/M) interfaces. In this article, results on the MgO/Cu(X) (where X = Ag or Sb) systems are summarized. Nanometer-size MgO precipitates with atomically clean and atomically sharp interfaces were prepared in these systems by internal oxidation. Segregation of the ternary component (Ag or Sb) at the MgO/Cu heterophase interface was enhanced by extended low-temperature anneals. Magnesia precipitates in the 3DAP reconstructions were delineated as isoconcentration surfaces, and segregation of each ternary component at the C/M interfaces was analyzed with the proximity histogram method developed at Northwestern University. This method allows the direct extraction of the Gibbsian interfacial excess of solute at the C/M interfaces from the experimental data. A value of (3.2+/-2.0) x 10(17)m(-2) at 500 degrees C is obtained for the segregation of Ag at a MgO/Cu(Ag) interface, while a value of (2.9+/-0.9) x 10(18) m(-2) at 500 degrees C is obtained for the segregation of Sb at a MgO/Cu(Sb) interface. The larger Gibbsian excess for Sb segregation at this ceramic/metal heterophase interface is most likely due to the so-called pdeltaV effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...