Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(25): 5497-5512, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39030399

RESUMO

Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.

2.
Talanta ; 277: 126358, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879944

RESUMO

Ambient ionization mass spectrometry allows for analysis of samples in their natural state, i.e., with no sample pre-treatment. It can be viewed as a fast, simple, and economical analysis, but its main disadvantages include a lower analytical performance due to the presence of complex sample matrix and the lack of chromatographic separation prior to the introduction of the sample into the mass spectrometer. Here we present an application of two ambient ionization mass spectrometry techniques, i.e., Desorption Atmospheric Pressure Photoionization and Dielectric Barrier Discharge Ionization, for the analysis of known Selective Androgen Receptor Modulators, which represent common compounds of abuse in professional and semiprofessional sport. Eight real samples of illegal food supplements, seized by the local law enforcement, were used to test the performance of the ambient mass spectrometry and the results were validated against a newly developed targeted LC-UV-MS/MS method performed in multiple reaction monitoring mode with an external calibration for each analyte. In order to decide whether or not the compound can be declared as present, we proposed a system of rules for the interpretation of the obtained spectra. The criteria are based on mass spectrum matching (5-10 ppm accuracy from the theoretical exact mass and a correct isotopic pattern), duration of the mass signal (three or five consecutive scans, depending on the instrumentation used), and intensity above the background noise (threefold increase in intensity and absolute intensity above 5E4 or 1E5, depending on the instrumentation). When applying these criteria, good agreement was found between the tested methods. Ambient ionization techniques were effective at detecting SARMs at pharmacologically relevant doses, i.e., approximately above 1 mg per capsule, although they may fail to detect lower levels or isomeric species. It is demonstrated that when adhering to a set of clear and consistent rules, ambient mass spectrometry can be employed as a qualitative technique for the screening of illegal SARMs with sufficient confidence and without the necessity to perform a regular LC-MS analysis.


Assuntos
Receptores Androgênicos , Receptores Androgênicos/metabolismo , Dopagem Esportivo/prevenção & controle , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Suplementos Nutricionais/análise , Detecção do Abuso de Substâncias/métodos , Antagonistas de Receptores de Andrógenos/análise , Humanos , Cromatografia Líquida/métodos
3.
Analyst ; 149(11): 3152-3160, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38630503

RESUMO

Cholesterol plays an important biological role in the body, and its disruption in homeostasis and synthesis has been implicated in several diseases. Mapping the locations of cholesterol is crucial for gaining a better understanding of these conditions. Silver deposition has proven to be an effective method for analyzing cholesterol using mass spectrometry imaging (MSI). We optimized and evaluated thermal evaporation as an alternative deposition technique to sputtering for silver deposition in MSI of cholesterol. A silver layer with a thickness of 6 nm provided an optimal combination of cholesterol signal intensity and mass resolution. The deposition of an ultrathin nanofilm of silver enabled high-resolution MSI with a pixel size of 10 µm. We used this optimized method to visualize the distribution of cholesterol in the senile plaques in the brains of APP/PS1 mice, a model that resembles Alzheimer's disease pathology. We found that cholesterol was evenly distributed across the frontal cortex tissue, with no evidence of plaque-like accumulation. Additionally, we investigated the presence and distribution of cholesterol in myocardial sections of a human heart affected by wild-type ATTR amyloidosis. We identified the presence of cholesterol in areas with amyloid deposition, but complete colocalization was not observed.


Assuntos
Colesterol , Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Colesterol/análise , Colesterol/química , Prata/química , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Camundongos , Camundongos Transgênicos , Placa Amiloide , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Miocárdio/metabolismo , Miocárdio/química , Miocárdio/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Volatilização , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Temperatura
4.
Nutrients ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686722

RESUMO

Alzheimer's disease (AD) is a progressive brain disorder characterized by extracellular amyloid-ß (Aß) plaques, intracellular neurofibrillary tangles formed by hyperphosphorylated Tau protein and neuroinflammation. Previous research has shown that obesity and type 2 diabetes mellitus, underlined by insulin resistance (IR), are risk factors for neurodegenerative disorders. In this study, obesity-induced peripheral and central IR and inflammation were studied in relation to AD-like pathology in the brains and periphery of APP/PS1 mice, a model of Aß pathology, fed a high-fat diet (HFD). APP/PS1 mice and their wild-type controls fed either a standard diet or HFD were characterized at the ages of 3, 6 and 10 months by metabolic parameters related to obesity via mass spectroscopy, nuclear magnetic resonance, immunoblotting and immunohistochemistry to quantify how obesity affected AD pathology. The HFD induced substantial peripheral IR leading to central IR. APP/PS1-fed HFD mice had more pronounced IR, glucose intolerance and liver steatosis than their WT controls. The HFD worsened Aß pathology in the hippocampi of APP/PS1 mice and significantly supported both peripheral and central inflammation. This study reveals a deleterious effect of obesity-related mild peripheral inflammation and prediabetes on the development of Aß and Tau pathology and neuroinflammation in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Doença de Alzheimer/etiologia , Doenças Neuroinflamatórias , Dieta Hiperlipídica/efeitos adversos , Inflamação , Peptídeos beta-Amiloides
5.
Bioengineering (Basel) ; 10(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37370671

RESUMO

The aim of this study was to compare concentrations of endogenous N-acylethanolamine (NAE) lipid mediators-palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and anandamide (AEA)-in fresh, decontaminated, cryopreserved, and freeze-dried amniotic membrane (AM) allografts, thereby determining whether AM's analgesic and anti-inflammatory efficiency related to NAEs persists during storage. The concentrations of NAEs were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. Indirect fluorescent immunohistochemistry was used to detect the PEA PPAR-α receptor. The concentrations of PEA, OEA, and AEA were significantly higher after decontamination. A significant decrease was found in cryopreserved AM compared to decontaminated tissue for PEA but not for OEA and AEA. However, significantly higher values for all NAEs were detected in cryopreserved samples compared to fresh tissue before decontamination. The freeze-dried AM had similar values to decontaminated AM with no statistically significant difference. The nuclear staining of the PPAR-α receptor was clearly visible in all specimens. The stability of NAEs in AM after cryopreservation was demonstrated under tissue bank storage conditions. However, a significant decrease, but still higher concentration of PEA compared to fresh not decontaminated tissue, was found in cryopreserved, but not freeze-dried, AM. Results indicate that NAEs persist during storage in levels sufficient for the analgesic and anti-inflammatory effects. This means that cryopreserved AM allografts released for transplant purposes before the expected expiration (usually 3-5 years) will still show a strong analgesic effect. The same situation was confirmed for AM lyophilized after one year of storage. This work thus contributed to the clarification of the analgesic effect of NAEs in AM allografts.

6.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175121

RESUMO

A typical bottom-up proteomic workflow comprises sample digestion with trypsin, separation of the hydrolysate using reversed-phase HPLC, and detection of peptides via electrospray ionization (ESI) tandem mass spectrometry. Despite the advantages and wide usage of protein identification and quantification, the procedure has limitations. Some domains or parts of the proteins may remain inadequately described due to inefficient detection of certain peptides. This study presents an alternative approach based on sample acetylation and mass spectrometry with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). These ionizations allowed for improved detection of acetylated peptides obtained via chymotrypsin or glutamyl peptidase I (Glu-C) digestion. APCI and APPI spectra of acetylated peptides often provided sequence information already at the full scan level, while fragmentation spectra of protonated molecules and sodium adducts were easy to interpret. As demonstrated for bovine serum albumin, acetylation improved proteomic analysis. Compared to ESI, gas-phase ionizations APCI and APPI made it possible to detect more peptides and provide better sequence coverages in most cases. Importantly, APCI and APPI detected many peptides which passed unnoticed in the ESI source. Therefore, analytical methods based on chymotrypsin or Glu-C digestion, acetylation, and APPI or APCI provide data complementary to classical bottom-up proteomics.


Assuntos
Quimotripsina , Proteômica , Acetilação , Espectrometria de Massas por Ionização por Electrospray/métodos , Pressão Atmosférica , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos
7.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175204

RESUMO

Aliphatic hydrocarbons (HCs) are usually analyzed by gas chromatography (GC) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. However, analyzing long-chain HCs by GC is difficult because of their low volatility and the risk of decomposition at high temperatures. MALDI cannot distinguish between isomeric HCs. An alternative approach based on silver ion high-performance liquid chromatography (Ag-HPLC) is shown here. The separation of HC standards and cuticular HCs was accomplished using two ChromSpher Lipids columns connected in series. A gradient elution of the analytes was optimized using mobile phases prepared from hexane (or isooctane) and acetonitrile, 2-propanol, or toluene. HCs were detected by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Good separation of the analytes according to the number of double bonds, cis/trans geometry, and position of double bonds was achieved. The retention times increased with the number of double bonds, and trans isomers eluted ahead of cis isomers. The mobile phase significantly affected the mass spectra of HCs. Depending on the mobile phase composition, deprotonated molecules, molecular ions, protonated molecules, and various solvent-related adducts of HCs were observed. The optimized Ag-HPLC/APCI-MS was applied for characterizing cuticular HCs from a flesh fly, Neobellieria bullata, and cockroach, Periplaneta americana. The method made it possible to detect a significantly higher number of HCs than previously reported for GC or MALDI-MS. Unsaturated HCs were frequently detected as isomers differing by double-bond position(s). Minor HCs with trans double bonds were found beside the prevailing cis isomers. Ag-HPLC/APCI-MS has great potential to become a new tool in chemical ecology for studying cuticular HCs.


Assuntos
Hidrocarbonetos , Prata , Cromatografia Líquida de Alta Pressão/métodos , Prata/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Pressão Atmosférica
8.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979410

RESUMO

Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of enabling the unambiguous identification of these lipids in biological samples. TG-EST glycerol sn-regioisomers and isomers with the fatty acid ester of hydroxy fatty acid (FAHFA) subunit branched in the ω-, α-, or 10-position were used. Ammonium, lithium, and sodium adducts of TG-EST formed by nanoelectrospray ionization were subjected to collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). Product ion spectra allowed for identification of fatty acid (FA) and FAHFA subunits originally linked to the glycerol backbone and distinguished the α-branching site of the FAHFA from other estolide-branching isomers. The ω- and 10-branching sites were determined by combining CID with ozone-induced dissociation (OzID). Lithium adducts provided the most informative product ions, enabling characterization of FA, hydroxy fatty acid (HFA), and FAHFA subunits. Glycerol sn-regioisomers were distinguished based on the relative abundance of product ions and unambiguously identified using CID/OzID of lithium and sodium adducts.


Assuntos
Ozônio , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Triglicerídeos/química , Glicerol , Lítio/química , Ácidos Graxos/química , Ozônio/química , Sódio , Íons
9.
Anal Chem ; 95(8): 4196-4203, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800482

RESUMO

Electrospray may exhibit inadequate ionization efficiency in some applications. In such cases, atmospheric-pressure chemical ionization (APCI) and photoionization (APPI) can be used. Despite a wide application potential, no APCI and APPI sources dedicated to very low sample flow rates exist on the market. Since the ion source performance depends on the transfer of analytes from the liquid to the gas phase, a nebulizer is a critical component of an ion source. Here, we report on the nebulizer with a gas dynamic virtual nozzle (GDVN) and its applicability in APCI at microliter-per-minute flow rates. Nebulizers differing by geometrical parameters were fabricated and characterized regarding the jet breakup regime, droplet size, droplet velocity, and spray angle for liquid flow rates of 0.75-15.0 µL/min. A micro-APCI source with the GDVN nebulizer behaved as a mass-flow-sensitive detector and provided stable and intense analyte signals. Compared to a classical APCI source, an order of magnitude lower detection limit for verapamil was achieved. Mass spectra recorded with the nebulizer in dripping and jetting modes were almost identical and did not differ from normal APCI spectra. Clogging never occurred during the experiments, indicating the high robustness of the nebulizer. Low-flow-rate APCI and APPI sources with a GDVN sprayer promise new applications for low- and medium-polar analytes.

10.
PLoS One ; 18(1): e0279863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638082

RESUMO

BACKGROUND: Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS: Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS: N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS: The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.


Assuntos
Endocanabinoides , Placenta , Gravidez , Humanos , Feminino , Alcamidas Poli-Insaturadas , Etanolaminas , Analgésicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA