Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(22): 4911-4922.e4, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34610272

RESUMO

The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αß core Kenyon cells (on and off αßc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and "antineurons" connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αßc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables-the fill levels of the integrators and the strength of inhibition between them-are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes.


Assuntos
Corpos Pedunculados , Neurônios , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Mamíferos , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Odorantes , Olfato/fisiologia , Sinapses/fisiologia
2.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955437

RESUMO

Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells' dendrites and axons, and that both activity in APL and APL's inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Animais
3.
Curr Biol ; 24(15): 1723-30, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25042590

RESUMO

Dopaminergic neurons provide value signals in mammals and insects. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior.


Assuntos
Condicionamento Clássico , Drosophila melanogaster/fisiologia , Aprendizagem , Odorantes , Animais , Comportamento Apetitivo , Aprendizagem da Esquiva , Carboidratos/fisiologia , DEET/metabolismo , Feminino , Masculino , Percepção Olfatória
4.
Nature ; 489(7414): 145-9, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22902500

RESUMO

Learning through trial-and-error interactions allows animals to adapt innate behavioural 'rules of thumb' to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.


Assuntos
Corte , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Aprendizagem/fisiologia , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Acetatos/análise , Acetatos/farmacologia , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Drosophila melanogaster/citologia , Feminino , Aprendizagem/efeitos dos fármacos , Masculino , Corpos Pedunculados/citologia , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/fisiologia , Ácidos Oleicos/análise , Ácidos Oleicos/farmacologia , Feromônios/análise , Feromônios/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Atrativos Sexuais/análise , Comportamento Sexual Animal/fisiologia , Transmissão Sináptica/efeitos dos fármacos
5.
Cell ; 139(2): 405-15, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837039

RESUMO

Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known. By optically controlling genetically circumscribed subsets of dopaminergic neurons in the behaving fly, we have mapped the origin of aversive reinforcement signals to the PPL1 cluster of 12 dopaminergic cells. PPL1 projections target restricted domains in the vertical lobes and heel of the mushroom body. Artificially evoked activity in a small number of identifiable cells thus suffices for programming behaviorally meaningful memories. The delineation of core reinforcement circuitry is an essential first step in dissecting the neural mechanisms that compute and represent valuations, store associations, and guide actions.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Comportamento Animal , Encéfalo/fisiologia , Condicionamento Clássico , Dopamina/metabolismo , Dopamina/fisiologia , Estimulação Elétrica , Memória , Corpos Pedunculados/inervação , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Condutos Olfatórios
6.
EMBO J ; 26(12): 2904-14, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17525736

RESUMO

The cornerstone of the functionality of almost all motor proteins is the regulation of their activity by binding interactions with their respective substrates. In most cases, the underlying mechanism of this regulation remains unknown. Here, we reveal a novel mechanism used by secretory preproteins to control the catalytic cycle of the helicase 'DEAD' motor of SecA, the preprotein translocase ATPase. The central feature of this mechanism is a highly conserved salt-bridge, Gate1, that controls the opening/closure of the nucleotide cleft. Gate1 regulates the propagation of binding signal generated at the Preprotein Binding Domain to the nucleotide cleft, thus allowing the physical coupling of preprotein binding and release to the ATPase cycle. This relay mechanism is at play only after SecA has been previously 'primed' by binding to SecYEG, the transmembrane protein-conducting channel. The Gate1-controlled relay mechanism is essential for protein translocase catalysis and may be common in helicase motors.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Catálise , Ativação Enzimática , Dobramento de Proteína , Canais de Translocação SEC , Proteínas SecA , Temperatura
7.
Nat Neurosci ; 9(12): 1469-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17115036

RESUMO

When competing for resources, two Drosophila melanogaster flies of the same sex fight each other. Males and females fight with distinctly different styles, and males but not females establish dominance relationships. Here we show that sex-specific splicing of the fruitless gene plays a critical role in determining who and how a fly fights, and whether a dominance relationship forms.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Dominação-Subordinação , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Proteínas de Drosophila/fisiologia , Feminino , Masculino , Proteínas do Tecido Nervoso/fisiologia , Caracteres Sexuais , Fatores de Transcrição/fisiologia
8.
Biochim Biophys Acta ; 1694(1-3): 67-80, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15546658

RESUMO

Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Bactérias/metabolismo , Conformação Proteica , Transporte Proteico/fisiologia , Canais de Translocação SEC , Proteínas SecA
9.
J Biol Chem ; 279(21): 22490-7, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15007058

RESUMO

SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Catálise , Domínio Catalítico , Análise Mutacional de DNA , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrólise , Cinética , Ligantes , Proteínas de Membrana/química , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Temperatura
10.
J Biol Chem ; 277(16): 13724-31, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11825907

RESUMO

SecA, the preprotein translocase ATPase is built of an amino-terminal DEAD helicase motor domain bound to a regulatory C-domain. SecA recognizes mature and signal peptide preprotein regions. We now demonstrate that the amino-terminal 263 residues of the ATPase subdomain of the DEAD motor are necessary and sufficient for high affinity signal peptide binding. Binding is abrogated by deletion of residues 219-244 that lie within SSD, a novel substrate specificity element of the ATPase subdomain. SSD is essential for protein translocation, is unique to SecA, and is absent from other DEAD proteins. Signal peptide binding to the DEAD motor is controlled in trans by the C-terminal intramolecular regulator of ATPase (IRA1) switch. IRA1 mutations that activate the DEAD motor ATPase also enhance signal peptide affinity. This mechanism coordinates signal peptide binding with ATPase activation. Signal peptide binding causes widespread conformational changes to the ATPase subdomain and inhibits the DEAD motor ATPase. This involves an allosteric mechanism, since binding occurs at sites that are distinct from the catalytic ATPase determinants. Our data reveal the physical determinants and sophisticated intramolecular regulation that allow signal peptides to act as allosteric effectors of the SecA motor.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Adenosina Trifosfatases/metabolismo , Sítio Alostérico , Sítios de Ligação , Reagentes de Ligações Cruzadas/farmacologia , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Genéticos , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC , Proteínas SecA , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...