Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38591982

RESUMO

Tricalcium aluminate is an important phase of Portland clinker. In this paper, three polymorphs of C3A were prepared by means of the solid-state synthesis method using intensive milling of the raw material mixture which was doped with various amounts of Na2O and sintered at a temperature of 1300 °C for 2 h. The final products were evaluated through X-ray diffraction using Rietveld analysis. The effect of the Na dopant content on the change in the crystalline structure of tricalcium aluminate was studied. It was proven that the given preparation procedure, which differed from other studies, was close to the real conditions of the formation of Portland clinker, and it was possible to prepare a mixture of different polymorphs of calcium aluminate. Fundamental changes in the crystal structure occurred in the range of 3-4% Na, when the cubic structure changes to orthorhombic. At a dosage of Na dopant above 4%, the orthorhombic structure changes to a monoclinic structure. There are no clearly defined boundaries for the existence of individual C3A phases; these phases arise at the same time and overlap each other in the areas of their formation at different Na doses.

2.
J Microsc ; 294(2): 168-176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418930

RESUMO

C4AF is considered the least reactive main clinker phase, but its reactivity may be affected by adding supplementary cementitious materials (SCMs). Pure C4AF was synthesised in a laboratory furnace, and the role of silica fume without gypsum on its early hydration properties was monitored. Burning was carried out in four stages to achieve 99% purity of C4AF. Heat flow development was monitored by isothermal calorimetry over 7 days of hydration at 20°C and 40°C. The role of silica fume on hydrogarnet phase katoite (Ca3Al2(SiO4)3 - x(OH)4 x x = 1.5-3) formation during early hydration was studied. Rapid dissolution of C4AF, formation of metastable C-(A,F)-H and its conversion to C3(A, F)H6 was evidenced by isothermal calorimetry as a large exotherm. Changes in microstructure during early hydration were documented by SE micrographs, EDS point analyses, X-ray mapping and line scans by SEM-EDS. The phase composition was characterised by DTA-TGA and QXRD after 7 days of hydration. The katoite diffraction pattern is similar for the reference sample and sample with silica fume, but substitution in its structure can be revealed by X-ray microanalyses. The composition of katoite is variable due to the various extent of substitution of 4OH- by SiO4 4- due to silica fume.

3.
Part Fibre Toxicol ; 19(1): 52, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922858

RESUMO

BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCß1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.


Assuntos
Nanopartículas Metálicas , Fosfolipases Tipo C , Colesterol , Humanos , Inflamação , Chumbo , Macrófagos , Nanopartículas Metálicas/química , Óxidos
4.
Sci Total Environ ; 847: 157433, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868374

RESUMO

Ferrous slag produced by a historic smelter is washed from a slagheap and transported by a creek through a cave system. Slag filling cave spaces, abrasion of cave walls / calcite speleothems, and contamination of the aquatic environment with heavy metals and other toxic components are concerns. We characterize the slag in its deposition site, map its transport through the cave system, characterize the effect of slag transport, and evaluate the risks to both cave and aqueous environments. The study was based on chemical and phase analysis supported laboratory experiments and geochemical modeling. The slag in the slagheap was dominated by amorphous glass phase (66 to 99 wt%) with mean composition of 49.8 ± 2.8 wt% SiO2, 29.9 ± 1.6 wt% CaO, 13.4 ± 1.2 wt% Al2O3, 2.7 ± 0.3 wt% K2O, and 1.2 ± 0.1 wt% MgO. Minerals such as melilite, plagioclase, anorthite, and wollastonite / pseudowollastonite with lower amounts of quartz, cristobalite, and calcite were detected. Slag enriches the cave environment with Se, As, W, Y, U, Be, Cs, Sc, Cd, Hf, Ba, Th, Cr, Zr, Zn, and V. However, only Zr, V, Co, and As exceed the specified limits for soils (US EPA and EU limits). The dissolution lifetime of a 1 mm3 volume of slag was estimated to be 27,000 years, whereas the mean residence time of the slag in the cave is much shorter, defined by a flood frequency of ca. 47 years. Consequently, the extent of slag weathering and contamination of cave environment by slag weathering products is small under given conditions. However, slag enriched in U and Th can increase radon production as a result of alpha decay. The slag has an abrasive effect on surrounding rocks and disintegrated slag can contaminate calcite speleothems.


Assuntos
Metais Pesados , Radônio , Cádmio/análise , Carbonato de Cálcio/análise , Compostos de Cálcio , República Tcheca , Óxido de Magnésio/análise , Metais Pesados/análise , Minerais/análise , Quartzo/análise , Radônio/análise , Silicatos , Dióxido de Silício/análise , Solo
5.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34496359

RESUMO

Understanding underlying processes behind the simple and easily scalable graphene synthesis methods enables their large-scale deployment in the emerging energy storage and printable device applications. Microwave plasma decomposition of organic precursors forms a high-temperature environment, above 3000 K, where the process of catalyst-free dehydrogenation and consequent formation of C2molecules leads to nucleation and growth of high-quality few-layer graphene (FLG). In this work, we show experimental evidence that a high-temperature environment with a gas mixture of H2and acetylene, C2H2, leads to a transition from amorphous to highly crystalline material proving the suggested dehydrogenation mechanism. The overall conversion efficiency of carbon to FLG reached up to 47%, three times as much as for methane or ethanol, and increased with increasing microwave power (i.e. with the size of the high-temperature zone) and hydrocarbon flow rate. The yield decreased with decreasing C:H ratio while the best quality FLG (low D/G-0.5 and high 2D/G-1.5 Raman band ratio) was achieved for C:H ratio of 1:3. The structures contained less than 1 at% of oxygen. No additional hydrogen was necessary for the synthesis of FLG from higher alcohols having the same stoichiometry, 1-propanol and isopropanol, but the yield was lower, 15%, and dependent on the atom arrangement of the precursor. The prepared FLG nanopowder was analyzed by scanning electron microscopy, Raman, x-ray photoelectron spectroscopy, and thermogravimetry. Microwave plasma was monitored by optical emission spectroscopy.

6.
Materials (Basel) ; 14(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562214

RESUMO

The presented study is focused on optimization and characterization of a high-alumina refractory aggregate based on natural raw materials-kaolins, claystone, and mullite dust by-product (used to increase the alumina and mullite contents, respectively). In total, four individual formulas with the Al2O3 contents between 45 and 50 wt.% were designed; the samples were subsequently fired, both in a laboratory oven and an industrial tunnel furnace. The effects of repeated firing were examined during industrial pilot tests. Mineral and chemical compositions and microstructures, of both the raw materials and designed aggregates, were thoroughly investigated by the means of X-ray fluorescence spectroscopy, powder X-ray diffraction, and optical and scanning electron microscopies. Porosity, mineral composition, and mullite crystal-size development during the firing process were also studied. Based on the acquired results, the formula with the perspective to be used as a new mullite grog, featuring similar properties as the available commercial products, however, with reduced production expenses, was selected. The quality of grog determines to a large extent the properties of the final product. Hence, optimization of aggregates for specific refractories is of a great importance. The production of engineered aggregates provides the opportunity to utilize industrial by-products.

7.
J Environ Manage ; 280: 111734, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33288317

RESUMO

Hazardous waste disposal via incineration generates a substantial amount of ashes and slags which pose an environmental risk due to their toxicity. Currently, these residues are deposited in landfills with loss of potentially recyclable raw material. In this study, the use of acidophilic bioleaching bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) as an environmentally friendly, efficient strategy for the recovery of valuable metals from incineration residues was investigated. Zinc, Cobalt, Copper, and Manganese from three different incineration residues were bio-extracted up to 100% using A. ferrooxidans under ferrous iron oxidation. The other metals showed lower leaching efficiencies based on the type of culture used. Sulfur-oxidizing cultures A. ferrooxidans and A. thiooxidans, containing sulfur as the sole substrate, expressed a significantly lower leaching efficiency (up to 50%). According to ICP-MS, ashes and slags contained Fe, Zn, Cu, Mn, Cr, Cd, and Ni in economically attractive concentrations between 0.2 and 75 mg g-1. Compared to conventional hydrometallurgical and pyrometallurgical processes, our biological approach provides many advantages such as: the use of a limited amount of used strong acids (H2SO4 or HCl), recycling operations at lower temperatures (~30 °C) and no emission of toxic gases during combustion (i.e., dioxins and furans).


Assuntos
Acidithiobacillus , Incineração , Bactérias , Ferro , Oxirredução , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...