Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Rep ; 12(2): 46-50, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31929873

RESUMO

Merosin deficient congenital muscular dystrophy type 1A (MDC1A) is caused by defects in the LAMA2 gene. Patients with MDC1A exhibit severe symptoms, including congenital hypotonia, delayed motor development and contractures. The present case report describes a Vietnamese male child with clinical manifestations of delayed motor development, limb-girdle muscular dystrophy, severe scoliosis and white matter abnormality in the brain. Whole exome sequencing (WES) was performed with subsequent validation using Sanger sequencing, and a de novo missense variant (NM_000426.3:c.1964T>C, p.Leu655Pro) and a splice site variant (NG_008678.1:c.3556-13T>A) in the LAMA2 gene of the proband was detected. The missense variant located in exon 14 and has not been reported previously, to the best of our knowledge; whereas the splice site variant has been previously reported to cause premature termination of transcription in patients with MDC1A. In silico tools predicted that the missense variant was damaging. Phenotype-genotype analysis suggested that this proband was associated with classical early onset MDC1A. The co-existence of a de novo and a heterozygous variant in the LAMA2 gene suggested that the de novo variant contributed to the autosomal recessive manner of the disease. Careful consideration of this event by clinical confirmation of parental carrier status may help to accurately determine the risk of occurrence of this disease in future offspring. Additionally, WES is recommended as a powerful tool to assist in identifying potentially causative variants for heterogeneous diseases such as MDC1A.

2.
BMC Pediatr ; 17(1): 104, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403842

RESUMO

BACKGROUND: Stem cell therapy has emerged as a promising method for improving motor function of patients with cerebral palsy. The aim of this study is to assess the safety and effectiveness of autologous bone marrow mononuclear stem cell transplantation in patients with cerebral palsy related to oxygen deprivation. METHODS: An open label uncontrolled clinical trial was carried out at Vinmec International Hospital. The intervention consisted of two administrations of stem cells, the first at baseline and the second 3 months later. Improvement was monitored at 3 months and 6 months after the first administration of stem cells, using the Gross Motor Function Measure (GMFM) and Modified Ashworth Score which measures muscle tone. RESULTS: No severe complications were recorded during the study. After transplantation, 12 patients encountered fever without infections and 9 patients experienced vomiting which was easily managed with medications. Gross motor function was markedly improved 3 months or 6 months after stem cell transplantation than at baseline. The post-transplantation GMFM-88 total score, each of its domains and the GMFM-66 percentile were all significantly higher (p-value < 0.001). Muscle spasticity also reduced significantly after transplantation (p-value < 0.001). The therapy was equally effective regardless of sex, age and GMFCS level (p-value > 0.05). CONCLUSION: Autologous bone marrow mononuclear cell transplantation appears to be a safe and effective therapy for patients with cerebral palsy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02569775 . Retrospectively registered on October 15, 2015.


Assuntos
Transplante de Medula Óssea/métodos , Paralisia Cerebral/cirurgia , Transplante de Células-Tronco Hematopoéticas/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Transplante Autólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA