Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 124, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648457

RESUMO

BACKGROUND: During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS: During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION: The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Sementes/genética , Solanum lycopersicum/genética , Aclimatação/genética , Secas , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Estudos de Associação Genética , Solanum lycopersicum/embriologia , Solanum lycopersicum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Transcriptoma
2.
Plant Cell ; 27(10): 2692-708, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26410298

RESUMO

Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.


Assuntos
Arabidopsis/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Evolução Biológica , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Germinação , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
New Phytol ; 205(2): 707-19, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256557

RESUMO

In this work, we dissect the physiological role of the transient photosynthetic stage observed in developing seeds of Arabidopsis thaliana. By combining biochemical and biophysical approaches, we demonstrate that despite similar features of the photosynthetic apparatus, light absorption, chloroplast morphology and electron transport are modified in green developing seeds, as a possible response to the peculiar light environment experienced by them as a result of sunlight filtration by the pericarp. In particular, enhanced exposure to far-red light, which mainly excites photosystem I, largely enhances cyclic electron flow around this complex at the expenses of oxygen evolution. Using pharmacological, genetic and metabolic analyses, we show that both linear and cyclic electron flows are important during seed formation for proper germination timing. Linear flow provides specific metabolites related to oxygen and water stress responses. Cyclic electron flow possibly adjusts the ATP to NADPH ratio to cope with the specific energy demand of developing seeds. By providing a comprehensive scenario of the characteristics, function and consequences of embryonic photosynthesis on seed vigour, our data provide a rationale for the transient building up of a photosynthetic machinery in seeds.


Assuntos
Arabidopsis/fisiologia , Fotossíntese/fisiologia , Sementes/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte de Elétrons , Germinação , Mutação , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...