Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38979305

RESUMO

Mechanisms of tumorigenesis in sinonasal squamous cell carcinoma (SNSCC) remain poorly described due to its rare nature. A subset of SNSCC are associated with the human papillomavirus (HPV); however, it is unknown whether HPV is a driver of HPV-associated SNSCC tumorigenesis or merely a neutral bystander. We hypothesized that performing the first large high-throughput sequencing study of SNSCC would reveal molecular mechanisms of tumorigenesis driving HPV-associated and HPV-independent SNSCC and identify targetable pathways. High-throughput sequencing was performed on 64 patients with HPV-associated and HPV-independent sinonasal carcinomas. Mutation annotation, viral integration, copy number, and pathway-based analyses were performed. Analysis of HPV-associated SNSCC revealed similar mutational patterns observed in HPV-associated cervical and head and neck squamous cell carcinoma, including lack of TP53 mutations and the presence of known hotspot mutations in PI3K and FGFR3. Further similarities included enrichment of APOBEC mutational signature, viral integration at known hotspot locations, and frequent mutations in epigenetic regulators. HPV-associated SNSCC-specific recurrent mutations were also identified including KMT2C , UBXN11 , AP3S1 , MT-ND4 , and MT-ND5 . Mutations in KMT2D and FGFR3 were associated with decreased overall survival. We developed the first known HPV-associated SNSCC cell line and combinatorial small molecule inhibition of YAP/TAZ and PI3K pathways synergistically inhibited tumor cell clonogenicity. In conclusion, HPV-associated SNSCC and HPV-independent SNSCC are driven by molecularly distinct mechanisms of tumorigenesis. Combinatorial blockade of YAP/TAZ and vertical inhibition of the PI3K pathway may be useful in targeting HPV-associated SNSCC whereas targeting MYC and horizontal inhibition of RAS/PI3K pathways for HPV-independent SNSCC. One Sentence Summary: This study solidifies HPV as a driver of HPV-associated SNSCC tumorigenesis, identifies molecular mechanisms distinguishing HPV-associated and HPV-independent SNSCC, and elucidates YAP/TAZ and PI3K blockade as key targets for HPV-associated SNSCC.

2.
Cancers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669619

RESUMO

Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue-tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy.

3.
J Am Chem Soc ; 142(22): 10087-10101, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32379440

RESUMO

The multicopper oxidases (MCOs) couple four 1e- oxidations of substrate to the 4e- reduction of O2 to H2O. These divide into two groups: those that oxidize organic substrates with high turnover frequencies (TOFs) up to 560 s-1 and those that oxidize metal ions with low TOFs, ∼1 s-1 or less. The catalytic mechanism of the organic oxidases has been elucidated, and the high TOF is achieved through rapid intramolecular electron transfer (IET) to the native intermediate (NI), which only slowly decays to the resting form. Here, we uncover the factors that govern the low TOF in Fet3p, a prototypical metallooxidase, in the context of the MCO mechanism. We determine that the NI decays rapidly under optimal turnover conditions, and the mechanism thereby becomes rate-limited by slow IET to the resting enzyme. Development of a catalytic model leads to the important conclusions that proton delivery to the NI controls the mechanism and enables the slow turnover in Fet3p that is functionally significant in Fe metabolism enabling efficient ferroxidase activity while avoiding ROS generation.


Assuntos
Compostos Ferrosos/metabolismo , Oxirredutases/metabolismo , Compostos Ferrosos/química , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética
4.
Nucl Med Biol ; 40(1): 117-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23141552

RESUMO

Imaging agents for nicotinic α4ß2 receptors in the brain have been under way for studying various CNS disorders. Previous studies from our laboratories have reported the successful development of agonist, ¹8F-nifene. In attempts to develop potential antagonists, ¹8F-nifrolidine and ¹8F-nifzetidine were previously reported. Further optimization of these fluoropropyl derivatives has now been carried out resulting in 3-(2-(S)-3,4-dehydropyrrolinylmethoxy)-5-(3'-Fluoropropyl)pyridine (nifrolene) as a new high affinity agent for nicotinic α4ß2 receptors. Nifrolene in rat brain homogenate assays--labeled with ³H-cytisine--exhibited a binding affinity of 0.36 nM. The fluorine-18 analog, ¹8F-nifrolene, was synthesized in approximately 10%-20% yield and specific activity was estimated to be >2000 Ci/mmol. Rat brain slices indicated selective binding to anterior thalamic nuclei, thalamus, subiculum, striata, cortex and other regions consistent with α4ß2 receptor distribution. This selective binding was displaced >90% by 300 µM nicotine. Thalamus to cerebellum ratio (>10) was the highest for ¹8F-nifrolene with several other regions showing selective binding. In vivo rat PET studies exhibited rapid uptake of ¹8F-nifrolene in the brain with specific retention in the thalamus and other brain regions while clearing out from the cerebellum. Thalamus to cerebellum ratio value in the rat was >4. Administration of nicotine caused a rapid decline in the thalamic ¹8F-nifrolene suggesting reversible binding to nicotinic receptors. PET imaging studies of ¹8F-nifrolene in anesthetized rhesus monkey revealed highest binding in the thalamus followed by regions of the lateral cingulated and temporal cortex. Cerebellum showed the least binding. Thalamus to cerebellum ratio in the monkey brain was >3 at 120 min. These ratios of ¹8F-nifrolene are higher than measured for ¹8F-nifrolidine and ¹8F-nifzetidine. ¹8F-Nifrolene thus shows promise as a new PET imaging agent for α4ß2 nAChR.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Pirrolidinas/síntese química , Receptores Nicotínicos/metabolismo , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Técnicas de Química Sintética , Marcação por Isótopo , Macaca mulatta , Masculino , Piridinas/química , Piridinas/metabolismo , Pirrolidinas/química , Pirrolidinas/metabolismo , Radioquímica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...