Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 113(5): 1048-1057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36519932

RESUMO

The US Food and Drug Administration (FDA) guidance has recommended several model-based predictions to determine potential drug-drug interactions (DDIs) mediated by cytochrome P450 (CYP) induction. In particular, the ratio of substrate area under the plasma concentration-time curve (AUCR) under and not under the effect of inducers is predicted by the Michaelis-Menten (MM) model, where the MM constant ( K m ) of a drug is implicitly assumed to be sufficiently higher than the concentration of CYP enzymes that metabolize the drug ( E T ) in both the liver and small intestine. Furthermore, the fraction absorbed from gut lumen ( F a ) is also assumed to be one because F a is usually unknown. Here, we found that such assumptions lead to serious errors in predictions of AUCR. To resolve this, we propose a new framework to predict AUCR. Specifically, F a was re-estimated from experimental permeability values rather than assuming it to be one. Importantly, we used the total quasi-steady-state approximation to derive a new equation, which is valid regardless of the relationship between K m and E T , unlike the MM model. Thus, our framework becomes much more accurate than the original FDA equation, especially for drugs with high affinities, such as midazolam or strong inducers, such as rifampicin, so that the ratio between K m and E T becomes low (i.e., the MM model is invalid). Our work greatly improves the prediction of clinical DDIs, which is critical to preventing drug toxicity and failure.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Interações Medicamentosas , Preparações Farmacêuticas , Sistema Enzimático do Citocromo P-450/metabolismo , Rifampina/farmacologia , Midazolam
2.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213976

RESUMO

Donepezil patch was developed to replace the original oral formulation. To accurately describe the pharmacokinetics of donepezil and investigate compatible doses between two formulations, a population pharmacokinetic model for oral and transdermal patches was built based on a clinical study. Plasma donepezil levels were analyzed via liquid chromatography/tandem mass spectrometry. Non-compartmental analyses were performed to derive the initial parameters for compartmental analyses. Compartmental analysis (CA) was performed with NLME software NONMEM assisted by Perl-speaks-NONMEM, and R. Model evaluation was proceeded via visual predictive checks (VPC), goodness-of-fit (GOF) plotting, and bootstrap method. The bioequivalence test was based on a 2 × 2 crossover design, and parameters of AUC and Cmax were considered. We found that a two-compartment model featuring two transit compartments accurately describes the pharmacokinetics of nine subjects administered in oral, as well as of the patch-dosed subjects. Through evaluation, the model was proven to be sufficiently accurate and suitable for further bioequivalence tests. Based on the bioequivalence test, 114 mg/101.3 cm2-146 mg/129.8 cm2 of donepezil patch per week was equivalent to 10 mg PO donepezil per day. In conclusion, the pharmacokinetic model was successfully developed, and acceptable parameters were estimated. However, the size calculated by an equivalent dose of donepezil patch could be rather large. Further optimization in formulation needs to be performed to find appropriate usability in clinical situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...