Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15596-15604, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500411

RESUMO

In this study, we show a direct correlation between the applied mechanical strain and an increase in monolayer MoS2 photoresponsivity. This shows that tensile strain can improve the efficiency of monolayer MoS2 photodetectors. The observed high photocurrent and extended response time in our devices are indicative that devices are predominantly governed by photogating mechanisms, which become more prominent with applied tensile strain. Furthermore, we have demonstrated that a nonencapsulated MoS2 monolayer can be used in strain-based devices for many cycles and extensive periods of time, showing endurance under ambient conditions without loss of functionality. Such robustness emphasizes the potential of MoS2 for further functionalization and utilization of different flexible sensors.

2.
Gels ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998942

RESUMO

(N-Alkyloxalamido)-amino acid amides 9-12 exhibit excellent gelation capacities toward some lipophilic solvents as well as toward the commercial fuels, petrol and diesel. Gelator 10 exhibits an excellent phase-selective gelation (PSG) ability and also possesses the highest gelation capacity toward petrol and diesel known to date, with minimum gelation concentration (MGC) values (%, w/v) as low as 0.012 and 0.015, respectively. The self-assembly motif of 10 in petrol and toluene gel fibres is determined from xerogel X-ray powder diffraction (XRPD) data via the simulated annealing procedure (SA) implemented in the EXPO2014 program and refined using the Rietveld method. The elucidated motif is strongly supported by the NMR (NOE and variable temperature) study of 10 toluene-d8 gel. It is shown that the triple unidirectional hydrogen bonding between gelator molecules involving oxalamide and carboxamide groups, together with their very low solubility, results in the formation of gel fibres of a very high aspect ratio (d = 10-30 nm, l = 0.6-1.3 µm), resulting in the as-yet unprecedented capacity of gelling commercial fuels. Rheological measurements performed at low concentrations of 10 confirmed the strength of the self-assembled network with the desired thixotropic properties that are advantageous for multiple applications. Instantaneous phase-selective gelation was obtained at room temperature through the addition of the 10 solution to the biphasic mixture of diesel and water in which the carrier solvent was congealed along with the diesel phase. The superior gelling properties and PSG ability of 10 may be used for the development of more efficient marine and surface oil spill recovery and waste water treatment technologies as well as the development of safer fuel storage and transport technologies.

3.
Gels ; 9(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37754380

RESUMO

The aim of this study was to assess the gelling potential of chiral oxalamide derivatives in vegetable oils. Special emphasis was given to the potential applications of the examined oil gels as sustained delivery systems and as fat substitutes in food products. The applicability of oil gelators is envisaged in food, cosmetics, and the pharmaceutical industry. The regulations requiring the elimination of saturated fats and rising concerns among consumers health motivated us to investigate small organic molecules capable of efficiently transforming from liquid oil to a gel state. The oxalamide organogelators showed remarkable gelation efficiency in vegetable oils, thermal and mechanical stability, self-healing properties, and a long period of stability. The physical properties of the gels were analysed by TEM microscopy, DSC calorimetry, and oscillatory rheology. The controlled release properties of acetylsalicylic acid, ibuprofen, and hydrocortisone were analysed by the LC-MS method. The influence of the oil type (sunflower, soybean, and olive oil) on gelation efficiency of diverse oxalamide derivatives was examined by oscillatory rheology. The oxalamide gelators showed thermoreversible and thixotropic properties in vegetable oils with a minimum gelation concentration of just 0.025 wt%. The substitution of palm fats with gelled sunflower oil applied in cocoa and milk spreads at gelator concentrations lower than 0.2 wt% have shown promising viscoelastic properties compared to that of the original food products.

4.
Nanotechnology ; 34(47)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37607501

RESUMO

Defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) greatly influence their electronic and optical properties by introducing localized in-gap states. Using different non-invasive techniques, we have investigated the spatial distribution of intrinsic defects in as-grown chemical vapor deposition (CVD) MoS2monolayers and correlated the results with the growth temperature of the sample. We have shown that by increasing the CVD growth temperature the concentration of defects decreases and their spatial distribution and type change, influencing the sample's electronic and optical properties.

5.
ACS Appl Mater Interfaces ; 14(18): 21727-21737, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500044

RESUMO

A major challenge in the investigation of all 2D materials is the development of synthesis protocols and tools which would enable their large-scale production and effective manipulation. The same holds for borophene, where experiments are still largely limited to in situ characterizations of small-area samples. In contrast, our work is based on millimeter-sized borophene sheets, synthesized on an Ir(111) surface in ultrahigh vacuum. Besides high-quality macroscopic synthesis, as confirmed by low-energy electron diffraction (LEED) and atomic force microscopy (AFM), we also demonstrate a successful transfer of borophene from Ir to a Si wafer via electrochemical delamination process. Comparative Raman spectroscopy, in combination with the density functional theory (DFT) calculations, proved that borophene's crystal structure has been preserved in the transfer. Our results demonstrate successful growth and manipulation of large-scale, single-layer borophene sheets with minor defects and ambient stability, thus expediting borophene implementation into more complex systems and devices.

6.
ACS Appl Mater Interfaces ; 13(42): 50552-50563, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34661383

RESUMO

Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS2-MoS2 and vertical WS2/MoS2 heterostructures on graphene. By means of scanning tunneling spectroscopy (STS), we first examined the electronic structure of monolayer MoS2, WS2, and WS2/MoS2 vertical heterostructure. Moreover, we investigate a band bending in the vicinity of the narrow one-dimensional (1D) interface of the WS2-MoS2 lateral heterostructure and mirror twin boundary (MTB) in the WS2/MoS2 vertical heterostructure. Density functional theory (DFT) is used for the calculation of the band structures, as well as for the density of states (DOS) maps at the interfaces. For the WS2-MoS2 lateral heterostructure, we confirm type-II band alignment and determine the corresponding depletion regions, charge densities, and the electric field at the interface. For the MTB, we observe a symmetric upward bend bending and relate it to the dielectric screening of graphene affecting dominantly the MoS2 layer. Quasi-freestanding heterostructures with sharp interfaces, large built-in electric field, and narrow depletion region widths are proper candidates for future designing of electronic and optoelectronic devices.

7.
Nanomaterials (Basel) ; 10(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932706

RESUMO

Magnetic polymer gels are a new promising class of nanocomposite gels. In this work, magnetic PEO/iron oxide nanocomposite hydrogels were synthesized using the one-step -irradiation method starting from poly(ethylene oxide) (PEO) and iron(III) precursor alkaline aqueous suspensions followed by simultaneous crosslinking of PEO chains and reduction of Fe(III) precursor. -irradiation dose and concentrations of Fe3+, 2-propanol and PEO in the initial suspensions were varied and optimized. With 2-propanol and at high doses magnetic gels with embedded magnetite nanoparticles were obtained, as confirmed by XRD, SEM and Mössbauer spectrometry. The quantitative determination of -irradiation generated Fe2+ was performed using the 1,10-phenanthroline method. The maximal Fe2+ molar fraction of 0.55 was achieved at 300 kGy, pH = 12 and initial 5% of Fe3+. The DSC and rheological measurements confirmed the formation of a well-structured network. The thermal and rheological properties of gels depended on the dose, PEO concentration and initial Fe3+ content (amount of nanoparticles synthesized inside gels). More amorphous and stronger gels were formed at higher dose and higher nanoparticle content. The properties of synthesized gels were determined by the presence of magnetic iron oxide nanoparticles, which acted as reinforcing agents and additional crosslinkers of PEO chains thus facilitating the one-step gel formation.

8.
Mar Drugs ; 17(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698712

RESUMO

We demonstrated the hitherto unknown property of the mycotoxin sterigmatocystin (STC) to provide homogeneous solutions in aqueous medium by forming a unique aggregate type (not formed by analogous aflatoxins), characterized by exceptionally strong circular dichroism (CD) bands in the 300-400 nm range. Results showed that these CD bands do not originate from intrinsic STC chirality but are a specific property of a peculiar aggregation process similar to psi-DNA CD response. Transmission electron microscopy (TEM) experiments revealed a fine fiber network resembling a supramolecular gel structure with helical fibers. Thermodynamic studies of aggregates by differential scanning calorimetry (DSC) revealed high reversibility of the dominant aggregation process. We demonstrated that the novel STC psi-CD band at 345 nm could be applied at biorelevant conditions (100 nanomolar concentration) and even in marine-salt content conditions for specific and quantitative monitoring of STC. Also, we showed that STC strongly non-covalently interacts with ds-DNA with likely toxic effects, thus contrary to the previous belief requiring prior enzyme epoxidation.


Assuntos
Dicroísmo Circular , Esterigmatocistina/química , Água/química , Varredura Diferencial de Calorimetria , DNA/metabolismo , Microscopia Eletrônica de Transmissão , Termodinâmica
9.
Nanotechnology ; 29(30): 305703, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29726400

RESUMO

MoS2 monolayer samples were synthesized on a SiO2/Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS2 of milimeter-scale size with an average defect density of 2 × 1013 cm-2. The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.

10.
Nanoscale ; 8(10): 5428-34, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890008

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) have been applied as the active layer in photodetectors and solar cells, displaying substantial charge photogeneration yields. However, their large exciton binding energy, which increases with decreasing thickness (number of layers), as well as the strong resonance peaks in the absorption spectra suggest that excitons are the primary photoexcited states. Detailed time-domain studies of the photoexcitation dynamics in TMDs exist mostly for MoS2. Here, we use femtosecond optical spectroscopy to study the exciton and charge dynamics following impulsive photoexcitation in few-layer WS2. We confirm excitons as the primary photoexcitation species and find that they dissociate into charge pairs with a time constant of about 1.3 ps. The better separation of the spectral features compared to MoS2 allows us to resolve a previously undetected process: these charges diffuse through the samples and get trapped at defects, such as flake edges or grain boundaries, causing an appreciable change of their transient absorption spectra. This finding opens the way to further studies of traps in TMD samples with different defect contents.

11.
Chemistry ; 19(26): 8558-72, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23653294

RESUMO

Chiral amino acid- and amino alcohol-oxalamides are well-known as versatile and efficient gelators of various lipophilic and polar organic solvents and water. To further explore the capacity of the amino acid/oxalamide structural fragment as a gelation-generating motif, the dioxalamide dimethyl esters 1(6)Me and 1(9)Me, and dicarboxylic acid 2(6)OH/2(9)OH derivatives containing flexible methylene bridges with odd (9; n=7) and even (6; n=4) numbers of methylene groups were prepared. Their self-assembly motifs and gelation properties were studied by using a number of methods (FTIR, (1)H NMR spectroscopy, CD, TEM, DSC, XRPD, molecular modeling, MMFF94, and DFT). In contrast to the previously studied chiral bis(amino acid or amino alcohol) oxalamide gelators, in which no chiral morphology was ever observed in the gels, the conformationally more flexible 1(6)Me, 1(9)Me, 2(6)OH, and 2(9)OH provide gelators that are capable of forming diverse aggregates of achiral and chiral morphologies, such as helical fibers, twisted tapes, nanotubules, straight fibers, and tapes, in some cases coexisting in the same gel sample. It is shown that the differential scanning calorimetry (DSC)-determined gelation enthalpies could not be correlated with gelator and solvent clogP values. Spectroscopic results show that intermolecular hydrogen-bonding between the oxalamide units provides the major and self-assembly directing intermolecular interaction in the aggregates. Molecular modeling studies reveal that molecular flexibility of gelators due to the presence of the polymethylene bridges gives three conformations (zz, p1, and p2) close in energy, which could form oxalamide hydrogen-bonded layers. The aggregates of the p1 and p2 conformations tend to twist due to steric repulsion between neighboring iBu groups at chiral centers. The X-ray powder diffraction (XRPD) results of 1(6)Me and 1(9)Me, xerogels prove the formation of p1 and p2 gel aggregates, respectively. The latter results explain the formation of gel aggregates with chiral morphology and also the simultaneous presence of aggregates of diverse morphology in the same gel system.


Assuntos
Amidas/química , Géis/química , Amidas/síntese química , Aminoácidos/química , Ligação de Hidrogênio , Conformação Molecular , Nanotubos/química , Solventes/química , Estereoisomerismo , Termodinâmica
12.
Beilstein J Org Chem ; 6: 945-59, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21085503

RESUMO

In this work we report on gelation properties, self-assembly motifs, chirality effects and morphological characteristics of gels formed by chiral retro-dipeptidic gelators in the form of terminal diacids (1a-5a) and their dimethyl ester (1b-5b) and dicarboxamide (1c-5c) derivatives. Terminal free acid retro-dipeptides (S,S)-bis(LeuLeu) 1a, (S,S)-bis(PhgPhg) 3a and (S,S)-bis(PhePhe) 5a showed moderate to excellent gelation of highly polar water/DMSO and water/DMF solvent mixtures. Retro-peptides incorporating different amino acids (S,S)-(LeuPhg) 2a and (S,S)-(PhgLeu) 4a showed no or very weak gelation. Different gelation effectiveness was found for racemic and single enantiomer gelators. The heterochiral (S,R)-1c diastereoisomer is capable of immobilizing up to 10 and 4 times larger volumes of dichloromethane/DMSO and toluene/DMSO solvent mixtures compared to homochiral (S,S)-1c. Based on the results of (1)H NMR, FTIR, CD investigations, molecular modeling and XRPD studies of diasteroisomeric diesters (S,S)-1b/(S,R)-1b and diacids (S,S)-1b/(S,R)-1a, a basic packing model in their gel aggregates is proposed. The intermolecular hydrogen bonding between extended gelator molecules utilizing both, the oxalamide and peptidic units and layered organization were identified as the most likely motifs appearing in the gel aggregates. Molecular modeling studies of (S,S)-1a/(S,R)-1a and (S,S)-1b/(S,R)-1b diasteroisomeric pairs revealed a decisive stereochemical influence yielding distinctly different low energy conformations: those of (S,R)-diastereoisomers with lipophilic i-Bu groups and polar carboxylic acid or ester groups located on the opposite sides of the oxalamide plane resembling bola amphiphilic structures and those of (S,S)-diasteroisomers possessing the same groups located at both sides of the oxalamide plane. Such conformational characteristics were found to strongly influence both, gelator effectiveness and morphological characteristics of gel aggregates.

13.
Chemistry ; 16(10): 3066-82, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20119987

RESUMO

Low molecular weight gelator molecules consisting of aliphatic acid, amino acid (phenylglycine), and omega-aminoaliphatic acid units have been designed. By varying the number of methylene units in the aliphatic and omega-aminoaliphatic acid chains, as defined by descriptors m and n, respectively, a series of positionally isomeric gelators having different positions of the peptidic hydrogen-bonding unit within the gelator molecule has been obtained. The gelation properties of the positional isomers have been determined in relation to a defined set of twenty solvents of different structure and polarity and analyzed in terms of gelator versatility (G(ver)) and effectiveness (G(eff)). The results of gelation tests have shown that simple synthetic optimizations of a "lead gelator molecule" by variation of m and n, end-group polarity (carboxylic acid versus sodium carboxylate), and stereochemistry (racemate versus optically pure form) allowed the identification of gelators with tremendously improved versatility (G(ver)) and effectiveness (G(eff)). Dramatic differences in G(eff) values of up to 70 times could be observed between pure racemate/enantiomer pairs of some gelators, which were manifested even in the gelation of very similar solvents such as isomeric xylenes. The combined results of spectroscopic ((1)H NMR, FTIR), electron microscopy (TEM), and X-ray diffraction studies suggest similar organization of the positionally isomeric gelators at the molecular level, comprising parallel beta-sheet hydrogen-bonded primary assemblies that form inversed bilayers at a higher organizational level. Differential scanning calorimetry (DSC) studies of selected enantiomer/racemate gelator pairs and their o- and p-xylene gels revealed the simultaneous presence of different polymorphs in the racemate gels. The increased gelation effectiveness of the racemate compared to that of the single enantiomer is most likely a consequence of its spontaneous resolution into enantiomeric bilayers and their subsequent organization into polymorphic aggregates of different energy. The latter determine the gel fiber thickness and solvent immobilization capacity of the formed gel network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...