Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(47): 475604, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31416057

RESUMO

State-of-the art models for statistical properties within the nanowire ensembles consider influx of precursors, reflection and surface diffusion of adatoms. These models predict a delay in the nanowire growth start and the evolution toward an asymmetric length distribution. We demonstrate here the effect of desorption of the nanowire material, which has not been considered so far in studies of the nanowire length distributions. We show that at the very beginning of growth the length distribution should be asymmetric due to the slow nucleation of nanowires. At longer times, the length distribution acquires a symmetric Gaussian shape due to the increased weight of desorption. The width of this distribution is larger than Poissonian and increases for higher ratio of desorption over deposition rate. Our model is consistent with the length evolution of organized self-catalyzed GaAs nanowires. We outline that desorption of the nanowire material should be minimized to achieve arrays of highly identical nanowires. These results are relevant for a wide variety of material systems.

2.
Nat Commun ; 10(1): 869, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787305

RESUMO

III-V semiconductor nanowires deterministically placed on top of silicon electronic platform would open many avenues in silicon-based photonics, quantum technologies and energy harvesting. For this to become a reality, gold-free site-selected growth is necessary. Here, we propose a mechanism which gives a clear route for maximizing the nanowire yield in the self-catalyzed growth fashion. It is widely accepted that growth of nanowires occurs on a layer-by-layer basis, starting at the triple-phase line. Contrary to common understanding, we find that vertical growth of nanowires starts at the oxide-substrate line interface, forming a ring-like structure several layers thick. This is granted by optimizing the diameter/height aspect ratio and cylindrical symmetry of holes, which impacts the diffusion flux of the group V element through the well-positioned group III droplet. This work provides clear grounds for realistic integration of III-Vs on silicon and for the organized growth of nanowires in other material systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...