Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 179: 107667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400419

RESUMO

Host-parasite coevolution is one of the fundamentals of evolutionary biology. Due to the intertwined evolutionary history of two interacting species and reciprocal coadaptation processes of hosts and parasites, we can expect that studying parasites will shed more light onto the evolutionary processes of their hosts. Monogenea (ectoparasitic Platyhelminthes) and their cyprinoid fish hosts represent one of the best models for studying host-parasite evolutionary relationships using a cophylogenetic approach. These parasites have developed remarkably high host specificity, where each host species often serves as a potential host for its own host-specific monogenean species. Here, the cophylogenetic relationships in the Dactylogyrus-Squalius system was investigated, as Squalius is one of several cyprinoid genera with puzzling phylogeography and inhabits all four major peri-Mediterranean peninsulas. Of 29 endemic Squalius species examined for the presence of Dactylogyrus parasites, a total of 13 Dactylogyrus species were collected from the gills of 20 Squalius species across a wide range of distribution. Phylogenetic reconstruction revealed a polyphyletic origin for Dactylogyrus species parasitizing congeneric Squalius, with four major clades being recognized. On the basis of the delimitation of host specificity, strict specialists parasitizing single host species, geographic specialists parasitizing congeners in a limited geographical region, and true generalists parasitizing congeners in various geographical regions were recognized in Dactylogyrus species parasitizing Squalius. The phylogenetic reconstruction of Squalius hosts revealed two major clades, the first encompassing only peri-Mediterranean species and the second including species from other Euro-Asian regions. Distance-based cophylogenetic methods did not reveal a statistically significant global cophylogenetic structure in the studied system; however, several host-parasite links among Iberian endemic species contributed significantly to the overall structure. The widest host range and associated genetic variability were recorded for D. folkmanovae, parasitizing nine Squalius species, and D. vistulae, parasitizing 13 Squalius species. Two different dispersion mechanisms and morphological adaptations to Squalius hosts were clearly reflected in the contrasting cophylogenetic patterns for these two species with different levels of host specificity. While host-parasite cospeciation plays an important role in diversification within D. folkmanovae, diversification within D. vistulae is driven mainly by host switching.


Assuntos
Cyprinidae , Parasitos , Platelmintos , Trematódeos , Animais , Filogenia , Trematódeos/genética , Platelmintos/genética , Interações Hospedeiro-Parasita/genética , Cyprinidae/genética
2.
Heredity (Edinb) ; 117(1): 8-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980341

RESUMO

Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation.


Assuntos
Evolução Molecular , Lagartos/genética , Mamíferos/genética , Cromossomos Sexuais , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...