Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501379

RESUMO

Motivated by the ethnopharmacological use of Pulicaria dysenterica, in the present study, the antimicrobial potential of the extracted essential oil was investigated against a panel of eighteen microorganism strains. Additionally, anti-acetylcholinesterase and antispasmodic (isolated rat distal colon) activities, general acute toxicity (Artemia salina model), and immunomodulatory properties (cytotoxicity on isolated mouse macrophages) were studied. Detailed analyses of the essential oil led to the identification of 3-methoxycuminyl 2-methylbutanoate (a new natural product) and 3-methoxycuminyl 3-methylbutanoate (a rare natural product). The obtained esters and intermediates in the synthesis of the starting alcohol (3-methoxycuminol) were subjected to a battery of 1D- and 2D-NMR experiments. The synthesized esters were additionally characterized by GC-MS, IR, and UV-Vis. The synthesized compounds (ten in total) were biologically tested in the same way as the extracted P. dysenterica essential oil. The obtained low acute toxicity and promising antimicrobial potential suggest that the P. dysenterica essential oil might partially explain the ethnopharmacological application of P. dysenterica plant material for the treatment of gastrointestinal infections.

2.
Chem Biodivers ; 13(2): 198-209, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26880432

RESUMO

Herein, the results of the first study of the volatile and alkane profiles of Cephalaria ambrosioides Roem. & Schult. (Caprifoliaceae, subfamily Dipsacaceae) were reported. The GC-FID and GC/MS analyses of the essential oils hydrodistilled from leaves and stems (CA1) and flowers (CA2) of C. ambrosioides allowed the identification of 284 different components. The main compounds of the studied oil samples were palmitic acid (24.3 and 32.5% for CA1 and CA2, resp.), hexahydrofarnesyl acetone (1.4 and 10.8% for CA1 and CA2, resp.), (Z)-hex-3-en-1-ol (7.0 and <0.1% for CA1 and CA2, resp.), and linoleic acid (1.9 and 6.5% for CA1 and CA2, resp.). Essential-oil compositional data of selected plant species belonging to the Dipsacaceae (15) and Morinaceae (2) subfamilies were used to resolve taxonomical ambiguities regarding the genus Cephalaria and its infrageneric relations, especially concerning the subfamily Morinaceae (formerly a genus within Dipsacaceae). The results of multivariate statistical analyses (25 different essential-oil samples) supported the exclusion of Morina species from the Dipsacaceae subfamily. The relative abundances of alkanes from n-, iso-, and anteiso-series followed a (distorted) Gaussian-like distribution and suggested that the biosyntheses of n- and branched alkanes in C. ambrosioides are possibly not controlled by the same elongase. Also, the obtained results suggested that there was a difference in the biosynthesis/accumulation of alkanes in the vegetative and reproductive parts of C. ambrosioides.


Assuntos
Alcanos/análise , Caprifoliaceae/química , Dipsacaceae/química , Óleos Voláteis/química , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...