Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(6): pgad186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346272

RESUMO

Fires that occur in the wildland urban interface (WUI) often burn structures, vehicles, and their contents in addition to biomass in the natural landscape. Because these fires burn near population centers, their emissions may have a sizeable impact on public health, necessitating a better understanding of criteria and hazardous air pollutants emitted from these fires and how they differ from wildland fires. Previous studies on the toxicity of emissions from the combustion of building materials and vehicles have shown that urban fires may emit numerous toxic species such as hydrogen cyanide, hydrogen fluoride, hydrogen chloride, isocyanates, polycyclic aromatic hydrocarbons (PAHs), dioxins and furans, and a range of toxic organic compounds (e.g. benzene toluene, xylenes, styrene, and formaldehyde) and metals (e.g. lead, chromium, cadmium, and arsenic). We surveyed the literature to create a compendium of emission factors for species emitted from the combustion of building and vehicle materials and compared them with those from wildland fires. Emission factors for some toxic species like PAH and some organic compounds were several orders of magnitude greater than those from wildfires. We used this emission factor compendium to calculate a bounding estimate of the emissions from several notable WUI fires in the western United States to show that urban fuels may contribute a sizeable portion of the toxic emissions into the atmosphere. However, large gaps remain in our understanding of the fuel composition, fuel consumption, and combustion conditions in WUI fires that constrain our ability to estimate the impact of WUI fires.

2.
Int J Wildland Fire ; 31(2): 193-211, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35875325

RESUMO

Air quality models are used to assess the impact of smoke from wildland fires, both prescribed and natural, on ambient air quality and human health. However, the accuracy of these models is limited by uncertainties in the parametrisation of smoke plume injection height (PIH) and its vertical distribution. We compared PIH estimates from the plume rise method (Briggs) in the Community Multiscale Air Quality (CMAQ) modelling system with observations from the 2013 California Rim Fire and 2017 prescribed burns in Kansas. We also examined PIHs estimated using alternative plume rise algorithms, model grid resolutions and temporal burn profiles. For the Rim Fire, the Briggs method performed as well or better than the alternatives evaluated (mean bias of less than ±5-20% and root mean square error lower than 1000 m compared with the alternatives). PIH estimates for the Kansas prescribed burns improved when the burn window was reduced from the standard default of 12 h to 3 h. This analysis suggests that meteorological inputs, temporal allocation and heat release are the primary drivers for accurately modelling PIH.

3.
Atmos Environ (1994) ; 191: 328-339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31019376

RESUMO

Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. To represent the influence of wildland fire emissions on atmospheric composition, regional and global chemical transport models rely on emission inventories developed from estimates of burned area (i.e. fire size and location). While different methods of estimating annual burned area agree reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. can vary by more than a factor of 5. These differences in burned area lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement wildland fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire Inventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated PM and ozone concentrations across the contiguous U.S. (CONUS) due to the fire emission inventory used. The NEI is developed specifically for the U.S., while both FINN and GFED4s are available globally. We find that NEI emissions lead to the largest increases in modeled annual average PM2.5 (0.85 µg m-3) and April-September maximum daily 8-h ozone (0.28 ppb) nationally compared to a "no fire" baseline, followed by FINN (0.33 µg m-3 and 0.22 ppb) and GFED4s (0.12 µg m-3 and 0.17 ppb). Annual mean enhancements in wildland fire pollution are highest in the southern U.S. across all three inventories (over 4 µg m-3 and 2 ppb in some areas), but show considerable spatial variability within these regions. We also examine the representation of five individual fire events during 2011 and find that of the two global inventories, FINN reproduces more of the acute changes in pollutant concentrations modeled with NEI and shown in surface observations during each of the episodes investigated compared to GFED4s. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to burned area estimation approaches will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global scales.

4.
J Air Waste Manag Assoc ; 55(5): 677-92, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15991676

RESUMO

The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Cooperação Internacional , Aerossóis , Indústrias , México , Controle de Qualidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...