Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439193

RESUMO

Cervical cancer is one of the most common cancers and is one of the major cause of deaths in women, especially in underdeveloped countries. The patients are usually treated with surgery, radiotherapy, and chemotherapy. However, these treatments can cause several side effects and may lead to infertility. Another concerning gynecologic cancer is endometrial cancer, in which a high number of patients present a poor prognosis with low survival rates. AS1411, a DNA aptamer, increases anticancer therapeutic selectivity, and through its conjugation with gold nanoparticles (AS1411-AuNPs) it is possible to improve the anticancer effects. Therefore, AS1411-AuNPs are potential drug carriers for selectively delivering therapeutic drugs to cervical cancer. In this work, we used AS1411-AuNPs as a carrier for an acridine orange derivative (C8) or Imiquimod (IQ). The AS1411 aptamer was covalently bound to AuNPs, and each drug was associated via supramolecular assembly. The final nanoparticles presented suitable properties for pharmaceutical applications, such as small size, negative charge, and favorable drug release properties. Cellular uptake was characterized by confocal microscopy and flow cytometry, and effects on cellular viability were determined by MTT assay. The nanoparticles were then incorporated into a gel formulation of polyethylene glycol, suitable for topical application in the female genital tract. This gel showed promising tissue retention properties in Franz cells studies in the porcine vaginal epithelia. These findings suggest that the tested nanoparticles are promising drug carriers for cervical cancer therapy.

2.
Plant Methods ; 17(1): 59, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107973

RESUMO

BACKGROUND: Taraxacum officinale, or the common dandelion, is a widespread perennial species recognized worldwide as a common lawn and garden weed. Common dandelion is also cultivated for use in teas, as edible greens, and for use in traditional medicine. It produces latex and is closely related to the Russian dandelion, T. kok-saghyz, which is being developed as a rubber crop. Additionally, the vast majority of extant common dandelions reproduce asexually through apomictically derived seeds- an important goal for many major crops in modern agriculture. As such, there is increasing interest in the molecular control of important pathways as well as basic molecular biology and reproduction of common dandelion. RESULTS: Here we present an improved Agrobacterium-based genetic transformation and regeneration protocol, a protocol for generation and transformation of protoplasts using free DNA, and a protocol for leaf Agrobacterium infiltration for transient gene expression. These protocols use easily obtainable leaf explants from soil-grown plants and reagents common to most molecular plant laboratories. We show that common markers used in many plant transformation systems function as expected in common dandelion including fluorescent proteins, GUS, and anthocyanin regulation, as well as resistance to kanamycin, Basta, and hygromycin. CONCLUSION: Reproducible, stable and transient transformation methods are presented that will allow for needed molecular structure and function studies of genes and proteins in T. officinale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...