Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(18): 185708, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451126

RESUMO

Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

2.
Sci Rep ; 6: 29324, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381834

RESUMO

A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.


Assuntos
Avidina/metabolismo , Incrustação Biológica/prevenção & controle , Biotina/metabolismo , Polietilenoglicóis/metabolismo , Silanos/metabolismo , Aço Inoxidável/química , Propriedades de Superfície , Aderência Bacteriana , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica
3.
Langmuir ; 30(48): 14555-65, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25375206

RESUMO

In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for hESC-RPE cells.


Assuntos
Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Vidro/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Espectroscopia Fotoeletrônica , Propilaminas , Silanos/química , Propriedades de Superfície
4.
Nanotechnology ; 25(43): 435603, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25297847

RESUMO

Hybrid organic-inorganic interfaces are the key to functionalization of stainless steel (SS). We present a solution-based deposition method for fabricating uniform bimolecular organosilane monolayers on SS and show that their properties and functionalities can be further developed through site-specific biotinylation. We correlate molecular properties of the interface with its reactivity via surface sensitive synchrotron radiation mediated high-resolution photoelectron spectroscopy (HR-PES) and chemical derivatization (CD), and we demonstrate specific bonding of streptavidin proteins to the hybrid interface. The method facilitates efficient growth of uniform bimolecular organosilane monolayers on SS under ambient conditions without the need to prime the SS surface with vacuum-deposited inorganic buffer layers. The obtained insights into molecular bonding, orientation, and behaviour of surface-confined organofunctional silanes on SS enable a new generic approach to functionalization of SS surfaces with versatile nanomolecular organosilane layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...