Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eurasian J Med ; 55(2): 128-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648023

RESUMO

OBJECTIVE: The aim of the study is to investigate the protective effects of nicotinamide riboside on oxidative stress in an experimental sepsis model created by cecal ligation and puncture. MATERIALS AND METHODS: Rats were divided into 3 groups randomly: sham-operated (control) group, sep- sis group, and nicotinamide riboside-treated group. Sepsis model-induced cecal ligation and puncture was applied to sepsis group rats. Animals in the nicotinamide riboside-treated group were administered nicotin- amide riboside intraperitoneally (500 mg/kg). Tissue specimens from rats were biochemically calculated for their activities of catalase, superoxide dismutase, glutathione peroxidase, myeloperoxidase, and malondialde- hyde levels. Ovarian tissues of all rats were histopathologically evaluated. RESULTS: Catalase, superoxide dismutase, and glutathione peroxidase activities were lower in the sepsis group compared to the sham-operated (control) group. Superoxide dismutase activity was significantly higher in the nicotinamide riboside-treated group than in control and sepsis group (P <.05). Myeloperoxidase activi- ties and mean malondialdehyde concentration of ovarian tissue were lower in nicotinamide riboside-treated group than in sepsis group (P<.05). The light microscopic assessment revealed that ovarian tissue was protected, and inflammation and interstitial edema decreased in nicotinamide riboside-treated group. The follicular damage findings were notably decreased in nicotinamide riboside-treated group in comparison to sepsis group (P<0.05). CONCLUSION: Our findings indicated that nicotinamide riboside diminished ovarian injury in sepsis via inhibiting tissue infiltration and increasing endogenous antioxidant capacity. Nicotinamide riboside administration may represent a new treatment approach for the prevention of sepsis-induced ovarian injury.

2.
Mikrobiyol Bul ; 49(3): 314-26, 2015 Jul.
Artigo em Turco | MEDLINE | ID: mdl-26313274

RESUMO

In asplenic individuals depending on the weakness of the immune response, sepsis are known to be developed with a high mortality rate. The most common species which are responsible for sepsis are encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. Sepsis caused by immune deficiencies linked to splenectomy leads to infections particularly in the lungs and liver and causes multiple organ failure. On the other hand, -D-glucan (BDG), a branched glucose polymer, shows immunomodulatory activity, by enhancing the resistance of the host against microbial agents, and promotes phagocytic and proliferative activities of reticuloendothelial system. The aim of this experimental study was to investigate the effects of BDG alone and in combination with ceftriaxone on sepsis caused by encapsulated invasive S.pneumoniae serotype 19F. A total of 36 Sprague-Dawley rats were used in the study, and the animals (6 in each group) were equally divided into six groups as control, splenectomy, sepsis, BDG, ceftriaxone and BDG+ceftriaxone groups. Treatment groups were intravenously infected with S.pneumoniae 19F strain, and after sacrification, microbiological [bacterial counts (cfu/mL)], biochemical (myeloperoxidase activity, DNA oxidation, specific IgM and IgG levels) and histopathological analysis were performed in the tissue samples. In the study, BDG, ceftriaxone and BDG+ceftriaxone groups had statistically significant decrease in the amount of bacteria in all tissues when compared to the sepsis group (p<0.05). We demonstrated that, BDG alone or combined treatment partially recovered the low serum IgM levels in splenectomized rats (p<0.001 ve p<0.02, respectively) and completely inhibited oxidative DNA damage in lung and liver after S.pneumoniae infection (p<0.00001). In addition, BDG alone or combined treatment fairly minimized the presence of bacteria in all tissues, when compared with sepsis group (p<0.00001). The data of our study suggests that, BDG, an immunomodulatory agent, alone and in combination with ceftriaxone can reverse the systemic inflammatory reaction in S.pneumoniae sepsis and thereby can reduce multiple organ failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...