Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nano Lett ; 18(4): 2233-2242, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29498867

RESUMO

We perform ab initio molecular dynamics on experimentally relevant-sized lead sulfide (PbS) nanocrystals (NCs) constructed with thiol or Cl, Br, and I anion surfaces to determine their vibrational and dynamic electronic structure. We show that electron-phonon interactions can explain the large thermal broadening and fast carrier cooling rates experimentally observed in Pb-chalcogenide NCs. Furthermore, our simulations reveal that electron-phonon interactions are suppressed in halide-terminated NCs due to reduction of both the thermal displacement of surface atoms and the spatial overlap of the charge carriers with these large atomic vibrations. This work shows how surface engineering, guided by simulations, can be used to systematically control carrier dynamics.

2.
Nano Lett ; 17(1): 276-283, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28005386

RESUMO

Recent experimental advances have revealed that the mean free path (mfp) of phonons contributing significantly to thermal transport in crystalline semiconductors can be several microns long. Almost all of these experiments are based on bulk and thin film materials and use techniques that are not directly applicable to nanowires. By developing a process with which we could fabricate multiple electrically contacted and suspended segments on individual heavily doped smooth Silicon nanowires, we measured phonon transport across varying length scales using a DC self-heating technique. Our measurements show that diffusive thermal transport is still valid across O(100) nm length scales, supporting the diffuse nature of phonon-boundary scattering even on smooth nanowire surfaces. Our work also showcases the self-heating technique as an important alternative to the thermal bridge technique to measure phonon transport across short length scales relevant to mapping the phonon mfp spectrum in nanowires.

3.
Nature ; 531(7596): 618-22, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26958836

RESUMO

Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10-13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes permits the rational selection of nanomaterials, their surface treatments, and the design of devices incorporating them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...