Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dyn Control ; : 1-26, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36590649

RESUMO

This paper presents the development and analysis of artificial neural network (ANN) models for the nonlinear fractional-order (FO) point reactor kinetics model, FO Nordheim-Fuchs model, inverse FO point reactor kinetics model and FO constant delayed neutron production rate approximation model. These models represent the dynamics of a nuclear reactor with neutron transport modeled as subdiffusion. These FO models are nonlinear in nature, are comprised of a system of coupled fractional differential equations and integral equations, and are considered to be difficult for solving both analytically and numerically. The ANN models were developed using the data generated from these models. The work involves the iterative process of ANN learning with different combinations of layers and neurons. It is shown through extensive simulation studies that the developed ANN models faithfully capture the transient and steady-state dynamics of these FO models, thereby providing a satisfactory representation for the nonlinear subdiffusive process of neutron transport in a nuclear reactor.

2.
ISA Trans ; 53(2): 380-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24112646

RESUMO

Recently fractional-order (FO) differential equations are widely used in the areas of modeling and control. They are multivalued in nature hence their stability is defined using Riemann surfaces. The stability analysis of FO linear systems using the technique of Root Locus is the main focus of this paper. Procedure to plot root locus of FO systems in s-plane has been proposed by many authors, which are complicated, and analysis using these methods is also difficult and incomplete. In this paper, we have proposed a simple method of plotting root locus of FO systems. In the proposed method, the FO system is transformed into its integer-order counterpart and then root locus of this transformed system is plotted. It is shown with the help of examples that the root locus of this transformed system (which is obviously very easy to plot) has exactly the same shape and structure as the root locus of the original FO system. So stability of the FO system can be directly deduced and analyzed from the root locus of the transformed IO system. This proposed procedure of developing and analyzing the root locus of FO systems is much easier and straightforward than the existing methods suggested in the literature. This root locus plot is used to comment about the stability of FO system. It also gives the range for the amplifier gain k required to maintain this stability. The reliability of the method is verified with analytical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...