Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577529

RESUMO

Hedgehog (Hh) signaling is essential for development, homeostasis, and regeneration1. Misactivation of the Hh pathway underlies medulloblastoma, the most common malignant brain tumor in children, and basal cell carcinoma (BCC), the most common cancer in the United States2. Primary cilia regulate Hh signal transduction3, but target genes that drive cell fate decisions in response to ciliary ligands or oncogenic Hh signaling are incompletely understood. Here we define the Hh gene expression program using RNA sequencing of cultured cells treated with ciliary ligands, BCCs from humans, and Hh-associated medulloblastomas from humans and mice (Fig. 1a). To validate our results, we integrate lipidomic mass spectrometry and bacterial metabolite labeling of free sterols with genetic and pharmacologic approaches in cells and mice. Our results reveal novel Hh target genes such as the oxysterol synthase Hsd11ß1 and the adipokine Retnla that regulate lipid metabolism to drive cell fate decisions in response to Hh pathway activation. These data provide insights into cellular mechanisms underlying ciliary and oncogenic Hh signaling and elucidate targets to treat Hh-associated cancers.

2.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33455953

RESUMO

Islet transplantation is a promising approach to enable type 1 diabetic patients to attain glycemic control independent of insulin injections. However, up to 60% of islets are lost immediately following transplantation. To improve this outcome, islets can be transplanted within bioscaffolds, however, synthetic bioscaffolds induce an intense inflammatory reaction which can have detrimental effects on islet function and survival. In the present study, we first improved the biocompatibility of polydimethylsiloxane (PDMS) bioscaffolds by coating them with collagen. To reduce the inflammatory response to PDMS bioscaffolds, we then enriched the bioscaffolds with dexamethasone-loaded microplates (DEX-µScaffolds). These DEX-microplates have the ability to release DEX in a sustained manner over 7 weeks within a therapeutic range that does not affect the glucose responsiveness of the islets but which minimizes inflammation in the surrounding microenvironment. The bioscaffold showed excellent mechanical properties that enabled it to resist pore collapse thereby helping to facilitate islet seeding and its handling for implantation, and subsequent engraftment, within the epididymal fat pad (EFP). Following the transplantation of islets into the EFP of diabetic mice using DEX-µScaffolds there was a return in basal blood glucose to normal values by day 4, with normoglycemia maintained for 30 d. Furthermore, these animals demonstrated a normal dynamic response to glucose challenges with histological evidence showing reduced pro-inflammatory cytokines and fibrotic tissue surrounding DEX-µScaffolds at the transplantation site. In contrast, diabetic animals transplanted with either islets alone or islets in bioscaffolds without DEX microplates were not able to regain glycemic control during basal conditions with overall poor islet function. Taken together, our data show that coating PDMS bioscaffolds with collagen, and enriching them with DEX-microplates, significantly prolongs and enhances islet function and survival.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Colágeno/farmacologia , Dexametasona/farmacologia , Diabetes Mellitus Experimental/terapia , Dimetilpolisiloxanos , Humanos , Insulina , Camundongos
3.
Mater Sci Eng C Mater Biol Appl ; 119: 111615, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321658

RESUMO

Cellular therapy, whereby cells are transplanted to replace or repair damaged tissues and/or cells, is now becoming a viable therapeutic option to treat many human diseases. Silicones, such as polydimethylsiloxane (PDMS), consist of a biocompatible, inert, non-degradable synthetic polymer, characterized by the presence of a silicon­oxygen­silicon (Si-O-Si) linkage in the backbone. Silicones have been commonly used in several biomedical applications such as soft tissue implants, microfluidic devices, heart valves and 3D bioscaffolds. Silicone macroporous bioscaffolds can be made with open, interconnected pores which can house cells and facilitate the formation of a dense vascular network inside the bioscaffold to aid in its engraftment and integration into the host tissue. In this review, we will present various synthesis/fabrication techniques for silicone-based bioscaffolds and will discuss their assets and potential drawbacks. Furthermore, since cell attachment onto the surface of silicones can be limited due to their intrinsic high hydrophobicity, we will also discuss different techniques of surface modification. Finally, we will examine the physical (i.e. density, porosity, pore interconnectivity, wettability, elasticity, roughness); mechanical (tension, compression, hardness); and chemical (elemental composition-properties) properties of silicone bioscaffolds and how these can be modulated to suit the needs for specific applications.


Assuntos
Dimetilpolisiloxanos , Silicones , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Polímeros , Porosidade , Próteses e Implantes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...