Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(5): e36044, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606244

RESUMO

Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined.


Assuntos
Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ribossomos/imunologia , Ribossomos/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Imunidade Inata , Técnicas In Vitro , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Transporte de Íons , Leupeptinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo , Inibidores de Proteassoma , Biossíntese de Proteínas/efeitos dos fármacos , RNA de Cadeia Dupla/farmacologia , Transdução de Sinais , Ácido Úrico/farmacologia
2.
PLoS Biol ; 10(4): e1001300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509134

RESUMO

Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses ("variolation" or "inoculation").


Assuntos
Formigas/imunologia , Imunidade Ativa , Imunidade Coletiva , Metarhizium/imunologia , Animais , Formigas/microbiologia , Comportamento Animal , Catepsina L/genética , Catepsina L/metabolismo , Defensinas/genética , Defensinas/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Comportamento Social , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...