Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 27(1): 18, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196980

RESUMO

BACKGROUND: ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. METHODS: We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. RESULTS: HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. CONCLUSIONS: These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC.


Assuntos
Carcinoma de Células Escamosas , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor/metabolismo , Carcinogênese , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Família , Inibidores de Histona Desacetilases , Humanos , Proteína Supressora de Tumor p53/genética
2.
J Pathol ; 254(4): 454-473, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638205

RESUMO

The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Humanos , Isoformas de Proteínas
3.
J Trace Elem Med Biol ; 61: 126511, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294608

RESUMO

OBJECTIVES: We used mice as an animal model to investigate the entry of ZnO nanoparticles from the ambient air into the lungs and other organs, subsequent changes in Zn levels and the impact on the transcription of Zn homeostasis-related genes in the lungs. METHODS: The mice were exposed to two concentrations of ZnO nanoparticles; lower (6.46 × 104 particles/cm3) and higher (1.93 × 106 particles/cm3), allowed to breathe the nanoparticles in the air for 12 weeks and subjected to necropsy. Characterization of the ZnO nanoparticles was done using transmission electron microscopy (TEM). Energy-dispersive X-ray (EDX) spectroscopy was used to quantify ZnO nanoparticles in the lungs, brain, liver and kidney. The total zinc content in the lungs, brain, liver, kidney, red blood cells and plasma was estimated by inductively coupled plasma mass spectroscopy (ICP-MS). Transcription rate of the genes was evaluated by RealTime PCR. RESULTS: The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes. CONCLUSION: Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

4.
Biomacromolecules ; 20(11): 4158-4170, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31603656

RESUMO

The remarkably diverse affinity of alginate (ALG) macromolecules for polyvalent metal ions makes cross-linked alginate gels an outstanding biomaterial. Surprisingly, however, very little is known about their interactions and structural transformations in physiological environments. To bridge this gap, we prepared a set of ALG gels cross-linked by various ions and monitored their structural changes at different media simulating gastric and intestinal fluids and cellular environments. For these studies, we used multinuclear solid-state NMR (ss-NMR) spectroscopy, which revealed a range of competitive ion-exchange and interconversion reactions, the rate of which strongly depended on the nature of the cross-linking metal ions. Depending on the environment, ALG chains adopted different forms, such as acidic (hydro)gels stabilized by strong hydrogen bonds, and/or weakly cross-linked Na/H-gels. Simultaneously, the exchanged polyvalent ions extensively interacted with the environment even forming in some cases insoluble phosphate microdomains directly deposited in the ALG bead matrix. The extent of the transformations and incorporation of secondary phases into the alginate beads followed the size and electronegativity of the cross-linking ions. Overall, the applied combination of various macroscopic and biological tests with multinuclear ss-NMR revealed a complex pathway of alginate beads transformations in physiological environments.


Assuntos
Alginatos/farmacologia , Materiais Biocompatíveis/farmacologia , Microambiente Celular/efeitos dos fármacos , Géis/farmacologia , Alginatos/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Géis/química , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Metais/química
5.
J Pharm Biomed Anal ; 161: 206-213, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30172087

RESUMO

The main objective of the presented research was to prepare an innovative carrier as a filler for detection tubes in the form of double-coated pellets with a very significant color transition during the detection of cholinesterase inhibitors such as nerve agents, organophosphorus or carbamate insecticides in liquids that is observable visually and also spectrophotometrically at 412 nm. The pellet cores were prepared by the extrusion/spheronization method. Consecutively, two different coats were applied on the pellet cores in the coating device using the Wurster column method. To increase the color change intensity, the second semipermeable coat based on Eudragit® RL was applied on top of the first coat, which was formed by butyrylcholinesterase immobilized in hydroxypropyl methylcellulose. Prepared samples differing in thickness of the second coat were evaluated for their quality parameters, enzymatic activity and inhibition. The detection mechanism was based on the standard Ellman's colorimetric reaction. It was observed that the semipermeable coat prevented leaching of the enzyme into the solution and led to an increased intensity of color transition from white - yellow to white - deep yellow/orange, thus enabling a more accurate visual detection. This system allows easy, rapid and safe identification of cholinesterase inhibitors in liquids, especially chemical warfare agents.


Assuntos
Inibidores da Colinesterase/análise , Colorimetria/métodos , Soluções/química , Espectrofotometria/métodos , Butirilcolinesterase/química , Derivados da Hipromelose/química , Polímeros/química
6.
Ceska Slov Farm ; 66(6): 274-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623709

RESUMO

Size-reduced microparticles were successfully obtained by solvent evaporation method. Different parameters were applied in each sample and their influence on microparticles was evaluated. As a model drug the insoluble ibuprofen was selected for the encapsulation process with Eudragit® RS. The obtained microparticles were inspected by optical microscopy and scanning electron microscopy. The effect of aqueous phase volume (600, 400, 200 ml) and the concentration of polyvinyl alcohol (PVA; 1.0% and 0.1%) were studied. It was evaluated how those variations and also size can affect microparticle characteristics such as encapsulation efficiency, drug loading, burst effect and microparticle morphology. It was observed that the sample prepared with 600 ml aqueous phase and 1% concentration of polyvinyl alcohol gave the most favorable results.Key words: microparticles solvent evaporation sustained drug release Eudragit RS®.


Assuntos
Ácidos Polimetacrílicos/síntese química , Solventes , Composição de Medicamentos , Microesferas , Tamanho da Partícula
7.
Biomacromolecules ; 18(8): 2478-2488, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636347

RESUMO

Alginate gels are an outstanding biomaterial widely applicable in tissue engineering, medicine, and pharmacy for cell transplantation, wound healing and efficient bioactive agent delivery, respectively. This contribution provides new and comprehensive insight into the atomic-resolution structure and dynamics of polyvalent ion-cross-linked alginate gels in microbead formulations. By applying various advanced solid-state NMR (ssNMR) spectroscopy techniques, we verified the homogeneous distribution of the cross-linking ions in the alginate gels and the high degree of ion exchange. We also established that the two-component character of the alginate gels arises from the concentration fluctuations of residual water molecules that are preferentially localized along polymer chains containing abundant mannuronic acid (M) residues. These hydrated M-rich blocks tend to self-aggregate into subnanometer domains. The resulting coexistence of two types of alginate chains differing in segmental dynamics was revealed by 1H-13C dipolar profile analysis, which indicated that the average fluctuation angles of the stiff and mobile alginate segments were about 5-9° or 30°, respectively. Next, the 13C CP/MAS NMR spectra indicated that the alginate polymer microstructure was strongly dependent on the type of cross-linking ion. The polymer chain regularity was determined to systematically decrease as the cross-linking ion radius decreased. Consistent with the 1H-1H correlation spectra, regular structures were found for the gels cross-linked by relatively large alkaline earth cations (Ba2+, Sr2+, or Ca2+), whereas the alginate chains cross-linked by bivalent transition metal ions (Zn2+) and trivalent metal cations (Al3+) exhibited significant irregularities. Notably, however, the observed disordering of the alginate chains was exclusively attributed to the M residues, whereas the structurally well-defined gels all contained guluronic acid (G) residues. Therefore, a key role of the units in M-rich blocks as mediators promoting the self-assembly of alginate chains was experimentally confirmed. Finally, combining 2D 27Al 3Q/MAS NMR spectroscopy with density functional theory (DFT) calculations provided previously unreported insight into the structure of the Al3+ cross-linking centers. Notably, even with a low residual amount of water, these cross-linking units adopt exclusively 6-fold octahedral coordination and exhibit significant motion, which considerably reduces quadrupolar coupling constants. Thus, the experimental strategy presented in this study provides a new perspective on cross-linked alginate structure and dynamics for which high-quality diffraction data at the atomic resolution level are inherently unavailable.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Ácidos Hexurônicos/química , Hidrogéis/química , Ácido Glucurônico/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...