Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biochem Eng Biotechnol ; 187: 1-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38273207

RESUMO

Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.


Assuntos
Técnicas Biossensoriais , Proteínas Recombinantes de Fusão , Técnicas Biossensoriais/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Humanos
2.
Sens Diagn ; 3(1): 104-111, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38249540

RESUMO

Concentration-therapeutic efficacy relationships have been observed for several therapeutic monoclonal antibodies (TmAb), where low circulating levels can result in ineffective treatment and high concentrations can cause adverse reactions. Rapid therapeutic drug monitoring (TDM) of TmAb drugs would provide the opportunity to adjust an individual patient's dosing regimen to improve treatment results. However, TDM for immunotherapies is currently limited to centralised testing methods with long sample-collection to result timeframes. Here, we show four point-of-care (PoC) TmAb biosensors by combining anti-idiotypic Affimer proteins and NanoBiT split luciferase technology at a molecular level to provide a platform for rapid quantification (<10 minutes) for four clinically relevant TmAb (rituximab, adalimumab, ipilimumab and trastuzumab). The rituximab sensor performed best with 4 pM limit of detection (LoD) and a quantifiable range between 8 pM-2 nM with neglectable matrix effects in serum up to 1%. After dilution of serum samples, the resulting quantifiable range for all four sensors falls within the clinically relevant range and compares favourably with the sensitivity and/or time-to-result of current ELISA standards. Further development of these sensors into a PoC test may improve treatment outcome and quality of life for patients receiving immunotherapy.

3.
Small ; 20(4): e2305186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649152

RESUMO

Nanopore sensing has been successfully used to characterize biological molecules with single-molecule resolution based on the resistive pulse sensing approach. However, its use in nanoparticle characterization has been constrained by the need to tailor the nanopore aperture size to the size of the analyte, precluding the analysis of heterogeneous samples. Additionally, nanopore sensors often require the use of high salt concentrations to improve the signal-to-noise ratio, which further limits their ability to study a wide range of nanoparticles that are unstable at high ionic strength. Here, a new paradigm in nanopore research that takes advantage of a polymer electrolyte system to comprise a conductive pulse sensing approach is presented. A finite element model is developed to explain the conductive pulse signals observed and compare these results with experiments. This system enables the analytical characterization of heterogeneous nanoparticle mixtures at low ionic strength . Furthermore, the wide applicability of the method is demonstrated by characterizing metallic nanospheres of varied sizes, plasmonic nanostars with various degrees of branching, and protein-based spherical nucleic acids with different oligonucleotide loadings. This system will complement the toolbox of nanomaterials characterization techniques to enable real-time optimization workflow for engineering a wide range of nanomaterials.


Assuntos
Nanopartículas , Nanoporos , Ácidos Nucleicos , Proteínas , Nanotecnologia
4.
Small ; : e2308776, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054620

RESUMO

DNA origami synthesis is a well-established technique with wide-ranging applications. In most cases, the synthesized origami must be purified to remove excess materials such as DNA oligos and other functional molecules. While several purification techniques are routinely used, all have limitations, and cannot be integrated with robotic systems. Here the use of solid-phase reversible immobilization (SPRI) beads as a scalable, high-throughput, and automatable method to purify DNA origami is demonstrated. Not only can this method remove unreacted oligos and biomolecules with yields comparable to existing methods while maintaining the high structural integrity of the origami, but it can also be integrated into an automated workflow to purify simultaneously large numbers and quantities of samples. It is envisioned that the SPRI beads purification method will improve the scalability of DNA nanostructures synthesis both for research and commercial applications.

5.
Biosens Bioelectron ; 237: 115488, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419072

RESUMO

Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a ß-lactamase - ß-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.


Assuntos
Técnicas Biossensoriais , Monitoramento de Medicamentos , Humanos , Ipilimumab , Anticorpos Monoclonais/uso terapêutico , Trastuzumab/uso terapêutico , Imunoterapia
6.
Antibiotics (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36289971

RESUMO

Adjusting dosing regimens based on measurements of carbapenem levels may improve carbapenem exposure in patients. This systematic review aims to describe the effect carbapenem therapeutic drug monitoring (TDM) has on health outcomes, including the emergence of antimicrobial resistance (AMR). Four databases were searched for studies that reported health outcomes following adjustment to dosing regimens, according to measurements of carbapenem concentration. Bias in the studies was assessed with risk of bias analysis tools. Study characteristics and outcomes were tabulated and a narrative synthesis was performed. In total, 2 randomised controlled trials (RCTs), 17 non-randomised studies, and 19 clinical case studies were included. Significant variation in TDM practice was seen; consequently, a meta-analysis was unsuitable. Few studies assessed impacts on AMR. No significant improvement on health outcomes and no detrimental effects of carbapenem TDM were observed. Five cohort studies showed significant associations between achieving target concentrations and clinical success, including suppression of resistance. Studies in this review showed no obvious improvement in clinical outcomes when TDM is implemented. Optimisation and standardisation of carbapenem TDM practice are needed to improve intervention success and enable study synthesis. Further suitably powered studies of standardised TDM are required to assess the impact of TMD on clinical outcomes and AMR.

7.
Biophys J ; 121(24): 4882-4891, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986518

RESUMO

DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.


Assuntos
Nanoporos , Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Nanotecnologia/métodos , DNA de Cadeia Simples , Microscopia de Força Atômica
8.
J Antimicrob Chemother ; 77(6): 1532-1541, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35355067

RESUMO

BACKGROUND: Dosing regimens guided by therapeutic drug monitoring (TDM) may be able to improve penicillin exposure in patients, which could result in improved patient health outcomes. OBJECTIVES: This systematic review aims to describe the impact penicillin TDM has on health outcomes, including antimicrobial resistance (AMR). METHODS: Studies measuring penicillins in patient samples that adjusted regimens according to the result, and reported health outcomes were selected. Study bias was assessed according to study type. Included study characteristics were tabulated and described by narrative synthesis. RESULTS: Three randomized controlled trials (RCTs), 16 cohort studies, and 9 case studies were included. No RCTs showed statistically significant improvements in health outcomes. Five cohort studies showed improvement in at least one health outcome associated with target attainment. However, there was a high risk of bias in all studies for health outcomes. One study assessed the impact of penicillin TDM on AMR and found that improved target attainment was associated with suppression of resistance. No studies found a detrimental effect of penicillin TDM. CONCLUSIONS: There is little evidence to suggest that TDM improves health outcomes, however neither health outcomes nor impact on AMR were adequately addressed. Variations in TDM implementation meant that a meta-analysis was not suitable. Penicillin TDM needs standardization, however there is currently no clear evidence of optimal conditions. Suitably powered studies are required to resolve the ambiguity surrounding the impact of TDM on clinical outcomes, including AMR. Further, standardized protocols and concentration targets need to be identified for TDM to be implemented successfully.


Assuntos
Monitoramento de Medicamentos , Penicilinas , Monitoramento de Medicamentos/métodos , Humanos , Avaliação de Resultados em Cuidados de Saúde , Penicilinas/efeitos adversos
10.
Nucleic Acids Res ; 49(3): 1426-1435, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476368

RESUMO

Recombinase A (RecA) is central to homologous recombination. However, despite significant advances, the mechanism with which RecA is able to orchestrate a search for homology remains elusive. DNA nanostructure-augmented high-speed AFM offers the spatial and temporal resolutions required to study the RecA recombination mechanism directly and at the single molecule level. We present the direct in situ observation of RecA-orchestrated alignment of homologous DNA strands to form a stable recombination product within a supporting DNA nanostructure. We show the existence of subtle and short-lived states in the interaction landscape, which suggests that RecA transiently samples micro-homology at the single RecA monomer-level throughout the search for sequence alignment. These transient interactions form the early steps in the search for sequence homology, prior to the formation of stable pairings at >8 nucleotide seeds. The removal of sequence micro-homology results in the loss of the associated transient sampling at that location.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinação Homóloga , Recombinases Rec A/metabolismo , DNA/química , Microscopia de Força Atômica , Nanoestruturas/química , Polimerização , Homologia de Sequência do Ácido Nucleico
11.
Nat Commun ; 11(1): 4384, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873796

RESUMO

The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , DNA/química , Nanoestruturas/química , Imagem Individual de Molécula/instrumentação , Biomarcadores/análise , Proteína C-Reativa/análise , Desenho de Equipamento , Humanos , Limite de Detecção , Nanotecnologia/métodos
12.
Comput Struct Biotechnol J ; 17: 832-842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316727

RESUMO

At its inception DNA nanotechnology was conceived as a tool for spatially arranging biological molecules in a programmable and deterministic way to improve their interrogation. To date, DNA nanotechnology has provided a versatile toolset of nanostructures and functional devices to augment traditional single molecule investigation approaches - including atomic force microscopy - by isolating, arranging and contextualising biological systems at the single molecule level. This review explores the state-of-the-art of DNA-based nanoscale tools employed to enhance and tune the interrogation of biological reactions, the study of spatially distributed pathways, the visualisation of enzyme interactions, the application and detection of forces to biological systems, and biosensing platforms.

13.
ACS Nano ; 12(1): 272-278, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29202219

RESUMO

Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.


Assuntos
DNA/metabolismo , Escherichia coli/enzimologia , Recombinases Rec A/metabolismo , Sítios de Ligação , DNA/química , Difusão , Escherichia coli/química , Escherichia coli/metabolismo , Microscopia de Força Atômica/métodos , Modelos Moleculares , Nanoestruturas/química , Ligação Proteica , Conformação Proteica , Recombinases Rec A/química
14.
Nucleic Acids Res ; 45(20): 11743-11751, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977583

RESUMO

The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid 'association' phase, where multiple filaments interact on the same dsDNA simultaneously. This cooperative nature is reconciled by the observation of localized dense clusters of pre-synaptic filaments interacting with the observed dsDNA molecules. This confinement of reactive species within the vicinity of the dsDNA, is likely to play an important role in ensuring that a high interaction rate between the nucleoprotein filaments and the dsDNA can be achieved. This is followed by a slower 'resolution' phase, where the synaptic joints either locate sequence homology and progress to a post-synaptic joint, or dissociate from the dsDNA. Surprisingly, the number of simultaneous synaptic joints decreases rapidly after saturation of the dsDNA population, suggesting a reduction in interaction activity of the RecA filaments. We find that the time-scale of this decay is in line with the time-scale of the dispersion of the RecA filament clusters, further emphasising the important role this cooperative phenomena may play in the RecA-facilitated homology search.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinação Homóloga , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Recombinases Rec A/química , Recombinases Rec A/genética
15.
ACS Appl Mater Interfaces ; 9(21): 18388-18397, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485941

RESUMO

Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.

16.
Sci Rep ; 7: 41872, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150746

RESUMO

The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.


Assuntos
Separação Celular/métodos , Microfluídica/métodos , Separação Celular/instrumentação , Células Cultivadas , Polpa Dentária/citologia , Eletroforese/instrumentação , Eletroforese/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Microfluídica/instrumentação , Saccharomyces cerevisiae/citologia , Sonicação/instrumentação , Sonicação/métodos
17.
Sci Rep ; 7: 41081, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112216

RESUMO

The use of DNA as a structural material for nanometre-scale construction has grown extensively over the last decades. The development of more advanced DNA-based materials would benefit from a modular approach enabling the direct assembly of additional elements onto nanostructures after fabrication. RecA-based nucleoprotein filaments encapsulating short ssDNA have been demonstrated as a tool for highly efficient and fully programmable post-hoc patterning of duplex DNA scaffold. However, the underlying assembly process is not fully understood, in particular when patterning complex DNA topologies. Here, we report the effect of basepair-mismatched regions and single-strand nicks in the double-stranded DNA scaffold on the yield of RecA-based assembly. Significant increases in assembly yield are observed upon the introduction of unpaired basepairs directly adjacent to the assembly region. However, when the unpaired regions were introduced further from the assembly site the assembly yield initially decreased as the length of the unpaired region was increased. These results suggest that an unpaired region acts as a kinetic trap for RecA-based nucleoprotein filaments, impeding the assembly mechanism. Conversely, when the unpaired region is located directly adjacent to the assembly site, it leads to an increase in efficiency of RecA patterning owing to increased breathing of the assembly site.


Assuntos
DNA/química , Nanoestruturas/química , Nucleoproteínas/química , Recombinases Rec A/química , Pareamento Incorreto de Bases/genética , DNA de Cadeia Simples/química , Escherichia coli/genética , Cinética , Nucleoproteínas/genética
18.
Angew Chem Int Ed Engl ; 54(3): 974-8, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25413024

RESUMO

Molecular crowding plays a significant role in regulating molecular conformation in cellular environments. It is also likely to be important wherever high molecular densities are required, for example in surface-phase studies, in which molecular densities generally far exceed those observed in solution. Using on-surface circular dichroism (CD) spectroscopy, we have investigated the structure of a synthetic peptide assembled into a highly packed monolayer. The immobilized peptide undergoes a structural transition between α-helical and random coil conformation upon changes in pH and ionic concentration, but critically the threshold for conformational change is altered dramatically by molecular crowding within the peptide monolayer. This study highlights the often overlooked role molecular crowding plays in regulating molecular structure and function in surface-phase studies of biological molecules.


Assuntos
Peptídeos/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
J Mater Chem B ; 2(24): 3741-3744, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25400934

RESUMO

We present an efficient solid phase synthesis methodology that provides easy access to a range of functionalised long-chain alkanethiol-oligoethyleneglycols that form well-defined self-assembled monolayers on gold and are compatible with pre- or post-assembly conjugation of (bio)molecules. We demonstrate the versatility of our synthetic route by synthesising LCAT-OEGs with a range of functional moieties, including peptides, electro-active redox groups, chemical handles for post-assembly conjugation of (bio)molecules, and demonstrate the application of our LCAT-OEG monolayers in immunosensing, where they show good biocompatibility with minimal biofouling.

20.
ACS Nano ; 8(4): 3322-30, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24593185

RESUMO

Protein-mediated self-assembly is arguably one of the most promising routes for building complex molecular nanostructures. Here, we report a molecular self-assembly technique that allows programmable, site-specific patterning of double-stranded DNA scaffolds, at a single-base resolution, by 3-nm-long RecA-based nucleoprotein filaments. RecA proteins bind to single-stranded DNA to form nucleoprotein filaments. These can self-assemble onto a double-stranded DNA scaffold at a region homologous to the nucleoprotein's single-stranded DNA sequence. We demonstrate that nucleoprotein filaments can be formed from single-stranded DNA molecules ranging in length from 60 nucleotides down to just 6 nucleotides, and these can be assembled site-specifically onto a model DNA scaffold both at the end of the scaffold and away from the end. In both cases, successful site-specific self-assembly is demonstrated even for the smallest nucleoprotein filaments, which are just 3 nm long, comprise only two monomers of RecA, and cover less than one helical turn of the double-stranded DNA scaffold. Finally, we demonstrate that the RecA-mediated assembly process is highly site-specific and that the filaments indeed bind only to the homologous region of the DNA scaffold, leaving the neighboring scaffold exposed.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Nucleoproteínas/química , Recombinases Rec A/química , DNA de Cadeia Simples/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...