Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 35(4): 747-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512610

RESUMO

Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Kluyveromyces/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Membrana Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Kluyveromyces/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Microbiology (Reading) ; 160(Pt 7): 1369-1378, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763423

RESUMO

In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized. KlPDC1 transcription is also strongly repressed by its product--KlPdc1--through a mechanism called autoregulation. We performed a genetic screen that allowed us to select and identify the regulatory gene RAG3 as a major factor in the transcriptional activity of the KlPDC1 promoter in the absence of the KlPdc1 protein, i.e. in the autoregulatory mechanism. We also showed that the two proteins Rag3 and KlPdc1 interact, co-localize in the cell and that KlPdc1 may control Rag3 nuclear localization.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Homeostase/genética , Kluyveromyces/enzimologia , Piruvato Descarboxilase/genética , Alelos , Proteínas Fúngicas/metabolismo , Genes Reporter , Genótipo , Kluyveromyces/genética , Kluyveromyces/ultraestrutura , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Mapeamento de Interação de Proteínas , Piruvato Descarboxilase/metabolismo , Deleção de Sequência , Transcrição Gênica
3.
Eukaryot Cell ; 11(11): 1382-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002104

RESUMO

In Kluyveromyces lactis, the expression of the major glucose permease gene RAG1 is controlled by extracellular glucose through a signaling cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 pathway. We have identified a key component of the K. lactis glucose signaling pathway by characterizing a new mutation, rag20-1, which impairs the regulation of RAG1 and hexokinase RAG5 genes by glucose. Functional complementation of the rag20-1 mutation identified the KlSNF2 gene, which encodes a protein 59% identical to S. cerevisiae Snf2, the major subunit of the SWI/SNF chromatin remodeling complex. Reverse transcription-quantitative PCR and chromatin immunoprecipitation analyses confirmed that the KlSnf2 protein binds to RAG1 and RAG5 promoters and promotes the recruitment of the basic helix-loop-helix Sck1 activator. Besides this transcriptional effect, KlSnf2 is also implicated in the glucose signaling pathway by controlling Sms1 and KlRgt1 posttranscriptional modifications. When KlSnf2 is absent, Sms1 is not degraded in the presence of glucose, leading to constitutive RAG1 gene repression by KlRgt1. Our work points out the crucial role played by KlSnf2 in the regulation of glucose transport and metabolism in K. lactis, notably, by suggesting a link between chromatin remodeling and the glucose signaling pathway.


Assuntos
Glucose/metabolismo , Glicólise , Kluyveromyces/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genes Fúngicos , Teste de Complementação Genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Mutação , Regiões Promotoras Genéticas , Proteólise , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
FEMS Yeast Res ; 11(6): 509-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21627769

RESUMO

Kluyveromyces lactis strains impaired in the nonhomologous end-joining pathway are relevant tools for the homologous integration of exogenous DNA into the genome, as in the mutant strains, close to 100% of the integrants are targeted to the homologous locus, compared with a few per cent for the wild-type recipient. Using a loxP-kanMX-loxP cassette together with a Cre-recombinase plasmid, a nej1∷loxP mutant strain suitable for multiple gene disruption has been constructed. Furthermore, using this strain, PCR-generated constructs with only 50 bp of homologous flanking sequences resulted in efficient exogenous DNA targeting.


Assuntos
Marcação de Genes/métodos , Genética Microbiana/métodos , Kluyveromyces/genética , Mutagênese Insercional/métodos , Recombinação Genética
5.
Microbiology (Reading) ; 157(Pt 5): 1509-1518, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21310785

RESUMO

In Saccharomyces cerevisiae, HSL1 (NIK1) encodes a serine-threonine protein kinase involved in cell cycle control and morphogenesis. Deletion of its putative orthologue in Kluyveromyces lactis, KlHSL1, gives rise to sensitivity to the respiratory inhibitor antimycin A (AA). Resistance to AA on glucose (Rag+ phenotype) is associated with genes (RAG) required for glucose metabolism/glycolysis. To understand the relationship between RAG and KlHSL1, rag and Klhsl1Δ mutant strains were investigated. The analysis showed that all the mutants contained a phosphorylated form of Hog1 and displayed an inability to synthesize/accumulate glycerol as a compatible solute. In addition, rag mutants also showed alterations in both cell wall and membrane fatty acids. The pleiotropic defects of these strains indicate that a common pathway regulates glucose utilization and stress response mechanisms, suggesting impaired adaptation of the plasma membrane/cell wall during the respiratory-fermentative transition. KlHsl1 could be the link between these adaptive pathways and the morphogenetic checkpoint.


Assuntos
Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Kluyveromyces/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Serina-Treonina Quinases/genética , Deleção de Sequência
6.
Eukaryot Cell ; 7(8): 1299-308, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18552281

RESUMO

The expression of the major glucose transporter gene, RAG1, is induced by glucose in Kluyveromyces lactis. This regulation involves several pathways, including one that is similar to Snf3/Rgt2-ScRgt1 in Saccharomyces cerevisiae. We have identified missing key components of the K. lactis glucose signaling pathway by comparison to the same pathway of S. cerevisiae. We characterized a new mutation, rag19, which impairs RAG1 regulation. The Rag19 protein is 43% identical to the F-box protein ScGrr1 of S. cerevisiae and is able to complement an Scgrr1 mutation. In the K. lactis genome, we identified a single gene, SMS1 (for similar to Mth1 and Std1), that encodes a protein showing an average of 50% identity with Mth1 and Std1, regulators of the ScRgt1 repressor. The suppression of the rag4 (glucose sensor), rag8 (casein kinase I), and rag19 mutations by the Deltasms1 deletion, together with the restoration of RAG1 transcription in the double mutants, demonstrates that Sms1 is a negative regulator of RAG1 expression and is acting downstream of Rag4, Rag8, and Rag19 in the cascade. We report that Sms1 regulates KlRgt1 repressor activity by preventing its phosphorylation in the absence of glucose, and that SMS1 is regulated by glucose, both at the transcriptional and the posttranslational level. Two-hybrid interactions of Sms1 with the glucose sensor and KlRgt1 repressor suggest that Sms1 mediates the glucose signal from the plasma membrane to the nucleus. All of these data demonstrated that Sms1 was the K. lactis homolog of MTH1 and STD1 of S. cerevisiae. Interestingly, MTH1 and STD1 were unable to complement a Deltasms1 mutation.


Assuntos
Proteínas Fúngicas/genética , Glucose/metabolismo , Proteínas de Homeodomínio/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Transdução de Sinais/genética , Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
7.
ISME J ; 1(7): 632-42, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18043670

RESUMO

To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.


Assuntos
Perfilação da Expressão Gênica/métodos , Variação Genética , Microbiologia do Solo , Ascomicetos/classificação , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/genética , Biodiversidade , Eletroforese Capilar , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética
8.
FEMS Yeast Res ; 7(5): 675-82, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17559574

RESUMO

In Kluyveromyces lactis, Rag3 regulates both fermentative metabolism and thiamine biosynthesis. Regulation of fermentation is exerted at the level of transcription of KlPDC1. We have isolated and identified a mutation of the transcription factor KlGCR1, Klgcr1-1, which suppressed the fermentative-deficient phenotype associated with the RAG3 deletion. In the mutant, the transcription of KlPDC1 was restored. However, we found that the suppression was not specific to the RAG3 mutation, as the Klgcr1-1 mutation could also suppress the fermentative defect associated with mutation of Sck1, another regulator of glycolysis.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Mutação , Piruvato Descarboxilase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Piruvato Descarboxilase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Mol Microbiol ; 63(5): 1537-48, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17302826

RESUMO

Casein kinases I (CKI) are ubiquitous in eukaryotic cells and are crucial factors for nutrient-signalling pathways in yeasts. In Kluyveromyces lactis, the KlRgt1 repressor represses the expression of the glucose transporter RAG1 gene in absence of glucose, but in response to glucose availability, Rag8 CKI cooperates with the Rag4 glucose sensor to inactivate KlRgt1. The SCK1 gene, a rag8 mutation suppressor, encodes a bHLH activator required for maximal expression of the RAG1 and glycolytic genes in the presence of glucose. We investigated further the function of Sck1 and its relationship to Rag8. We demonstrated that Sck1 regulates the RAG1 and glycolytic genes by directly binding to their promoter. We also found that SCK1 gene expression was induced by glucose and repressed by KlRgt1. In addition, we showed that (i) Sck1 was phosphorylated in vivo, (ii) Sck1 was phosphorylated in vitro by Rag8, and (iii) Sck1 was rapidly degraded in a rag8 mutant. We therefore suggest that Sck1 coordinates glucose import and glycolysis in K. lactis and that Rag8 controls this transcription factor by transcriptional and post-translational regulations.


Assuntos
Caseína Quinase I/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicólise , Kluyveromyces/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Fusão Gênica Artificial , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Fúngicas/fisiologia , Genes Reporter , Glicólise/genética , Kluyveromyces/genética , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , beta-Galactosidase/análise , beta-Galactosidase/genética
10.
Genetics ; 174(2): 617-26, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16783006

RESUMO

The RAG4 gene encodes for the sole transmembrane glucose sensor of Kluyveromyces lactis. A rag4 mutation leads to a fermentation-deficient phenotype (Rag- phenotype) and to a severe defect in the expression of the major glucose transporter gene RAG1. A recessive extragenic suppressor of the rag4 mutation has been identified. It encodes a protein (KlRgt1) 31% identical to the Saccharomyces cerevisiae Rgt1 regulator of the HXT genes (ScRgt1). The Klrgt1 null mutant displays abnormally high levels of RAG1 expression in the absence of glucose but still presents an induction of RAG1 expression in the presence of glucose. KlRgt1 is therefore only a repressor of RAG1. As described for ScRgt1, the KlRgt1 repressor function is controlled by phosphorylation in response to high glucose concentration and this phosphorylation is dependent on the sensor Rag4 and the casein kinase Rag8. However, contrary to that observed with ScRgt1, KlRgt1 is always bound to the RAG1 promoter. This article reveals that the key components of the glucose-signaling pathway are conserved between S. cerevisiae and K. lactis, but points out major differences in Rgt1 regulation and function that might reflect different carbon metabolism of these yeasts.


Assuntos
Proteínas Fúngicas/fisiologia , Glucose/metabolismo , Kluyveromyces/fisiologia , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Transativadores/fisiologia
11.
Genetics ; 168(2): 723-31, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514048

RESUMO

We isolated a mutant, rag17, which is impaired in glucose induction of expression of the major glucose transporter gene RAG1. The RAG17 gene encodes a protein 87% identical to S. cerevisiae enolases (Eno1 and Eno2). The Kleno null mutant showed no detectable enolase enzymatic activity and has severe growth defects on glucose and gluconeogenic carbon sources, indicating that K. lactis has a single enolase gene. In addition to RAG1, the transcription of several glycolytic genes was also strongly reduced in the DeltaKleno mutant. Moreover, the defect in RAG1 expression was observed in other mutants of the glycolytic pathway (hexokinase and phosphoglycerate kinase). Therefore, it seems that the enolase and a functional glycolytic flux are necessary for induction of expression of the Rag1 glucose permease in K. lactis.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genes RAG-1/genética , Glucose/metabolismo , Glicólise/fisiologia , Kluyveromyces/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosfopiruvato Hidratase/metabolismo , Gluconeogênese/fisiologia , Hexoquinase/genética , Kluyveromyces/enzimologia , Kluyveromyces/crescimento & desenvolvimento , Dados de Sequência Molecular , Fosfoglicerato Quinase/genética
12.
Curr Genet ; 40(6): 355-64, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11919674

RESUMO

The casein kinase I (Rag8p) of Kluyveromyces lactis has previously been shown to regulate the transcription of the low-affinity glucose transporter gene RAG1. To study this regulation, we have isolated multicopy suppressors of the rag8 mutation. One of them, SCK1 (suppressor of casein kinase), was characterised. The predicted product of the gene has a DNA-binding signature of the basic-helix-loop-helix type. It has an overall identity of 38% with Sgc1p (Tye7p) of Saccharomyces cerevisiae. The sck1 null mutant exhibited a Rag- phenotype (which indicates a reduced flux of glycolysis) that can be complemented by the SGC1 gene of S. cerevisiae. The level of transcription of several glycolytic genes, including RAG1, was reduced about twofold in glucose media in the sck1 null mutant. Moreover, in a rag8 mutant, the expression of SCK1 was strongly affected. Altogether, the results suggest that the regulation of glycolysis by casein kinase I involves, at least in part, Sck1p in K. lactis.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Glicólise , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Caseína Quinases , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Teste de Complementação Genética , Glucose/metabolismo , Kluyveromyces/enzimologia , Dados de Sequência Molecular , Fenótipo , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Supressão Genética/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...