Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Cogn Neurosci ; : 1-23, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38940741

RESUMO

Motion information has been argued to be central to the subjective segmentation of observed actions. Concerning object-directed actions, object-associated action information might as well inform efficient action segmentation and prediction. The present study compared the segmentation and neural processing of object manipulations and equivalent dough ball manipulations to elucidate the effect of object-action associations. Behavioral data corroborated that objective relational changes in the form of (un-)touchings of objects, hand, and ground represent meaningful anchor points in subjective action segmentation rendering them objective marks of meaningful event boundaries. As expected, segmentation behavior became even more systematic for the weakly informative dough. fMRI data were modeled by critical subjective, and computer-vision-derived objective event boundaries. Whole-brain as well as planned ROI analyses showed that object information had significant effects on how the brain processes these boundaries. This was especially pronounced at untouchings, that is, events that announced the beginning of the upcoming action and might be the point where competing predictions are aligned with perceptual input to update the current action model. As expected, weak object-action associations at untouching events were accompanied by increased biological motion processing, whereas strong object-action associations came with an increased contextual associative information processing, as indicated by increased parahippocampal activity. Interestingly, anterior inferior parietal lobule activity increased for weak object-action associations at untouching events, presumably because of an unrestricted number of candidate actions for dough manipulation. Our findings offer new insights into the significance of objects for the segmentation of action.

2.
Neuroimage ; 296: 120687, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871038

RESUMO

Even though actions we observe in everyday life seem to unfold in a continuous manner, they are automatically divided into meaningful chunks, that are single actions or segments, which provide information for the formation and updating of internal predictive models. Specifically, boundaries between actions constitute a hub for predictive processing since the prediction of the current action comes to an end and calls for updating of predictions for the next action. In the current study, we investigated neural processes which characterize such boundaries using a repertoire of complex action sequences with a predefined probabilistic structure. Action sequences consisted of actions that started with the hand touching an object (T) and ended with the hand releasing the object (U). These action boundaries were determined using an automatic computer vision algorithm. Participants trained all action sequences by imitating demo videos. Subsequently, they returned for an fMRI session during which the original action sequences were presented in addition to slightly modified versions thereof. Participants completed a post-fMRI memory test to assess the retention of original action sequences. The exchange of individual actions, and thus a violation of action prediction, resulted in increased activation of the action observation network and the anterior insula. At U events, marking the end of an action, increased brain activation in supplementary motor area, striatum, and lingual gyrus was indicative of the retrieval of the previously encoded action repertoire. As expected, brain activation at U events also reflected the predefined probabilistic branching structure of the action repertoire. At T events, marking the beginning of the next action, midline and hippocampal regions were recruited, reflecting the selected prediction of the unfolding action segment. In conclusion, our findings contribute to a better understanding of the various cerebral processes characterizing prediction during the observation of complex action repertoires.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Desempenho Psicomotor/fisiologia
3.
Sci Rep ; 14(1): 11054, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744976

RESUMO

Brain machine interfaces (BMIs) can substantially improve the quality of life of elderly or disabled people. However, performing complex action sequences with a BMI system is onerous because it requires issuing commands sequentially. Fundamentally different from this, we have designed a BMI system that reads out mental planning activity and issues commands in a proactive manner. To demonstrate this, we recorded brain activity from freely-moving monkeys performing an instructed task and decoded it with an energy-efficient, small and mobile field-programmable gate array hardware decoder triggering real-time action execution on smart devices. Core of this is an adaptive decoding algorithm that can compensate for the day-by-day neuronal signal fluctuations with minimal re-calibration effort. We show that open-loop planning-ahead control is possible using signals from primary and pre-motor areas leading to significant time-gain in the execution of action sequences. This novel approach provides, thus, a stepping stone towards improved and more humane control of different smart environments with mobile brain machine interfaces.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Animais , Encéfalo/fisiologia , Macaca mulatta
4.
PLoS Comput Biol ; 20(3): e1011926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442095

RESUMO

In many situations it is behaviorally relevant for an animal to respond to co-occurrences of perceptual, possibly polymodal features, while these features alone may have no importance. Thus, it is crucial for animals to learn such feature combinations in spite of the fact that they may occur with variable intensity and occurrence frequency. Here, we present a novel unsupervised learning mechanism that is largely independent of these contingencies and allows neurons in a network to achieve specificity for different feature combinations. This is achieved by a novel correlation-based (Hebbian) learning rule, which allows for linear weight growth and which is combined with a mechanism for gradually reducing the learning rate as soon as the neuron's response becomes feature combination specific. In a set of control experiments, we show that other existing advanced learning rules cannot satisfactorily form ordered multi-feature representations. In addition, we show that networks, which use this type of learning always stabilize and converge to subsets of neurons with different feature-combination specificity. Neurons with this property may, thus, serve as an initial stage for the processing of ecologically relevant real world situations for an animal.


Assuntos
Modelos Neurológicos , Aprendizado de Máquina não Supervisionado , Animais , Neurônios/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37934638

RESUMO

Finding optimal paths in connected graphs requires determining the smallest total cost for traveling along the graph's edges. This problem can be solved by several classical algorithms, where, usually, costs are predefined for all edges. Conventional planning methods can, thus, normally not be used when wanting to change costs in an adaptive way following the requirements of some task. Here, we show that one can define a neural network representation of path-finding problems by transforming cost values into synaptic weights, which allows for online weight adaptation using network learning mechanisms. When starting with an initial activity value of one, activity propagation in this network will lead to solutions, which are identical to those found by the Bellman-Ford (BF) algorithm. The neural network has the same algorithmic complexity as BF, and, in addition, we can show that network learning mechanisms (such as Hebbian learning) can adapt the weights in the network augmenting the resulting paths according to some task at hand. We demonstrate this by learning to navigate in an environment with obstacles as well as by learning to follow certain sequences of path nodes. Hence, the here-presented novel algorithm may open up a different regime of applications where path augmentation (by learning) is directly coupled with path finding in a natural way.

6.
Front Neurorobot ; 17: 1218977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692886

RESUMO

Traditional AI-planning methods for task planning in robotics require a symbolically encoded domain description. While powerful in well-defined scenarios, as well as human-interpretable, setting this up requires a substantial effort. Different from this, most everyday planning tasks are solved by humans intuitively, using mental imagery of the different planning steps. Here, we suggest that the same approach can be used for robots too, in cases which require only limited execution accuracy. In the current study, we propose a novel sub-symbolic method called Simulated Mental Imagery for Planning (SiMIP), which consists of perception, simulated action, success checking, and re-planning performed on 'imagined' images. We show that it is possible to implement mental imagery-based planning in an algorithmically sound way by combining regular convolutional neural networks and generative adversarial networks. With this method, the robot acquires the capability to use the initially existing scene to generate action plans without symbolic domain descriptions, while at the same time, plans remain human-interpretable, different from deep reinforcement learning, which is an alternative sub-symbolic approach. We create a data set from real scenes for a packing problem of having to correctly place different objects into different target slots. This way efficiency and success rate of this algorithm could be quantified.

7.
Commun Med (Lond) ; 3(1): 112, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587165

RESUMO

BACKGROUND: Aiming at objective early detection of neuromotor disorders such as cerebral palsy, we propose an innovative non-intrusive approach using a pressure sensing device to classify infant general movements. Here we differentiate typical general movement patterns of the "fidgety period" (fidgety movements) vs. the "pre-fidgety period" (writhing movements). METHODS: Participants (N = 45) were sampled from a typically-developing infant cohort. Multi-modal sensor data, including pressure data from a pressure sensing mat with 1024 sensors, were prospectively recorded for each infant in seven succeeding laboratory sessions in biweekly intervals from 4 to 16 weeks of post-term age. 1776 pressure data snippets, each 5 s long, from the two targeted age periods were taken for movement classification. Each snippet was pre-annotated based on corresponding synchronised video data by human assessors as either fidgety present or absent. Multiple neural network architectures were tested to distinguish the fidgety present vs. fidgety absent classes, including support vector machines, feed-forward networks, convolutional neural networks, and long short-term memory networks. RESULTS: Here we show that the convolution neural network achieved the highest average classification accuracy (81.4%). By comparing the pros and cons of other methods aiming at automated general movement assessment to the pressure sensing approach, we infer that the proposed approach has a high potential for clinical applications. CONCLUSIONS: We conclude that the pressure sensing approach has great potential for efficient large-scale motion data acquisition and sharing. This will in return enable improvement of the approach that may prove scalable for daily clinical application for evaluating infant neuromotor functions.


The movement of a baby is used by health care professionals to determine whether they are developing as expected. The aim of this study was to investigate whether a pad containing sensors that measured pressure occurring as the babies moved could enable identification of different movements of the babies. The results we obtained were similar to those obtained from use of a computer to process videos of the moving babies or other methods using movement sensors. This method could be more readily used to check the movement development of babies than other methods that are currently used.

8.
Front Comput Neurosci ; 17: 1172883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564901

RESUMO

An understanding of deep neural network decisions is based on the interpretability of model, which provides explanations that are understandable to human beings and helps avoid biases in model predictions. This study investigates and interprets the model output based on images from the training dataset, i.e., to debug the results of a network model in relation to the training dataset. Our objective was to understand the behavior (specifically, class prediction) of deep learning models through the analysis of perturbations of the loss functions. We calculated influence scores for the VGG16 network at different hidden layers across three types of disturbances in the original images of the ImageNet dataset: texture, style, and background elimination. The global and layer-wise influence scores allowed the identification of the most influential training images for the given testing set. We illustrated our findings using influence scores by highlighting the types of disturbances that bias predictions of the network. According to our results, layer-wise influence analysis pairs well with local interpretability methods such as Shapley values to demonstrate significant differences between disturbed image subgroups. Particularly in an image classification task, our layer-wise interpretability approach plays a pivotal role to identify the classification bias in pre-trained convolutional neural networks, thus, providing useful insights to retrain specific hidden layers.

9.
Front Psychol ; 14: 1191792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397285

RESUMO

Tools have coined human life, living conditions, and culture. Recognizing the cognitive architecture underlying tool use would allow us to comprehend its evolution, development, and physiological basis. However, the cognitive underpinnings of tool mastering remain little understood in spite of long-time research in neuroscientific, psychological, behavioral and technological fields. Moreover, the recent transition of tool use to the digital domain poses new challenges for explaining the underlying processes. In this interdisciplinary review, we propose three building blocks of tool mastering: (A) perceptual and motor abilities integrate to tool manipulation knowledge, (B) perceptual and cognitive abilities to functional tool knowledge, and (C) motor and cognitive abilities to means-end knowledge about tool use. This framework allows for integrating and structuring research findings and theoretical assumptions regarding the functional architecture of tool mastering via behavior in humans and non-human primates, brain networks, as well as computational and robotic models. An interdisciplinary perspective also helps to identify open questions and to inspire innovative research approaches. The framework can be applied to studies on the transition from classical to modern, non-mechanical tools and from analogue to digital user-tool interactions in virtual reality, which come with increased functional opacity and sensorimotor decoupling between tool user, tool, and target. By working towards an integrative theory on the cognitive architecture of the use of tools and technological assistants, this review aims at stimulating future interdisciplinary research avenues.

10.
iScience ; 26(4): 106348, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36994082

RESUMO

In behavioral research and clinical practice video data has rarely been shared or pooled across sites due to ethical concerns of confidentiality, although the need of shared large-scaled datasets remains increasing. This demand is even more imperative when data-heavy computer-based approaches are involved. To share data while abiding by privacy protection rules, a critical question arises whether efforts at data de-identification reduce data utility? We addressed this question by showcasing an established and video-based diagnostic tool for detecting neurological deficits. We demonstrated for the first time that, for analyzing infant neuromotor functions, pseudonymization by face-blurring video recordings is a viable approach. The redaction did not affect classification accuracy for either human assessors or artificial intelligence methods, suggesting an adequate and easy-to-apply solution for sharing behavioral video data. Our work shall encourage more innovative solutions to share and merge stand-alone video datasets into large data pools to advance science and public health.

11.
Adv Neurodev Disord ; 6(4): 369-388, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540761

RESUMO

Objectives: Research on typically developing (TD) children and those with neurodevelopmental disorders and genetic syndromes was targeted. Specifically, studies on autism spectrum disorder, Down syndrome, Rett syndrome, fragile X syndrome, cerebral palsy, Angelman syndrome, tuberous sclerosis complex, Williams-Beuren syndrome, Cri-du-chat syndrome, Prader-Willi syndrome, and West syndrome were searched. The objectives are to review observational and computational studies on the emergence of (pre-)babbling vocalisations and outline findings on acoustic characteristics of early verbal functions. Methods: A comprehensive review of the literature was performed including observational and computational studies focusing on spontaneous infant vocalisations at the pre-babbling age of TD children, individuals with genetic or neurodevelopmental disorders. Results: While there is substantial knowledge about early vocal development in TD infants, the pre-babbling phase in infants with neurodevelopmental and genetic syndromes is scarcely scrutinised. Related approaches, paradigms, and definitions vary substantially and insights into the onset and characteristics of early verbal functions in most above-mentioned disorders are missing. Most studies focused on acoustic low-level descriptors (e.g. fundamental frequency) which bore limited clinical relevance. This calls for computational approaches to analyse features of infant typical and atypical verbal development. Conclusions: Pre-babbling vocalisations as precursor for future speech-language functions may reveal valuable signs for identifying infants at risk for atypical development. Observational studies should be complemented by computational approaches to enable in-depth understanding of the developing speech-language functions. By disentangling features of typical and atypical early verbal development, computational approaches may support clinical screening and evaluation.

12.
PLoS One ; 17(5): e0266679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617161

RESUMO

Spike timing-dependent plasticity, related to differential Hebb-rules, has become a leading paradigm in neuronal learning, because weights can grow or shrink depending on the timing of pre- and post-synaptic signals. Here we use this paradigm to reduce unwanted (acoustic) noise. Our system relies on heterosynaptic differential Hebbian learning and we show that it can efficiently eliminate noise by up to -140 dB in multi-microphone setups under various conditions. The system quickly learns, most often within a few seconds, and it is robust with respect to different geometrical microphone configurations, too. Hence, this theoretical study demonstrates that it is possible to successfully transfer differential Hebbian learning, derived from the neurosciences, into a technical domain.


Assuntos
Aprendizagem , Plasticidade Neuronal , Aprendizagem/fisiologia , Matemática , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ruído , Sinapses/fisiologia
13.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7877-7887, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34170833

RESUMO

Trajectory or path planning is a fundamental issue in a wide variety of applications. In this article, we show that it is possible to solve path planning on a maze for multiple start point and endpoint highly efficiently with a novel configuration of multilayer networks that use only weighted pooling operations, for which no network training is needed. These networks create solutions, which are identical to those from classical algorithms such as breadth-first search (BFS), Dijkstra's algorithm, or TD(0). Different from competing approaches, very large mazes containing almost one billion nodes with dense obstacle configuration and several thousand importance-weighted path endpoints can this way be solved quickly in a single pass on parallel hardware.

14.
Neuroimage ; 243: 118534, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469813

RESUMO

Recognizing the actions of others depends on segmentation into meaningful events. After decades of research in this area, it remains still unclear how humans do this and which brain areas support underlying processes. Here we show that a computer vision-based model of touching and untouching events can predict human behavior in segmenting object manipulation actions with high accuracy. Using this computational model and functional Magnetic Resonance Imaging (fMRI), we pinpoint the neural networks underlying this segmentation behavior during an implicit action observation task. Segmentation was announced by a strong increase of visual activity at touching events followed by the engagement of frontal, hippocampal and insula regions, signaling updating expectation at subsequent untouching events. Brain activity and behavior show that touching-untouching motifs are critical features for identifying the key elements of actions including object manipulations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Tato/fisiologia , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/fisiologia , Movimento/fisiologia , Redes Neurais de Computação , Reconhecimento Psicológico , Adulto Jovem
15.
Biology (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202473

RESUMO

Our brains process information using a layered hierarchical network architecture, with abundant connections within each layer and sparse long-range connections between layers. As these long-range connections are mostly unchanged after development, each layer has to locally self-organize in response to new inputs to enable information routing between the sparse in- and output connections. Here we demonstrate that this can be achieved by a well-established model of cortical self-organization based on a well-orchestrated interplay between several plasticity processes. After this self-organization, stimuli conveyed by sparse inputs can be rapidly read out from a layer using only very few long-range connections. To achieve this information routing, the neurons that are stimulated form feed-forward projections into the unstimulated parts of the same layer and get more neurons to represent the stimulus. Hereby, the plasticity processes ensure that each neuron only receives projections from and responds to only one stimulus such that the network is partitioned into parts with different preferred stimuli. Along this line, we show that the relation between the network activity and connectivity self-organizes into a biologically plausible regime. Finally, we argue how the emerging connectivity may minimize the metabolic cost for maintaining a network structure that rapidly transmits stimulus information despite sparse input and output connectivity.

16.
Sci Rep ; 11(1): 9888, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972661

RESUMO

The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessment (GMA). This study proposes a novel machine learning algorithm to detect an age-specific movement pattern, the fidgety movements (FMs), in a prospectively collected sample of typically developing infants. Participants were recorded using a passive, single camera RGB video stream. The dataset of 2800 five-second snippets was annotated by two well-trained and experienced GMA assessors, with excellent inter- and intra-rater reliabilities. Using OpenPose, the infant full pose was recovered from the video stream in the form of a 25-points skeleton. This skeleton was used as input vector for a shallow multilayer neural network (SMNN). An ablation study was performed to justify the network's architecture and hyperparameters. We show for the first time that the SMNN is sufficient to discriminate fidgety from non-fidgety movements in a sample of age-specific typical movements with a classification accuracy of 88%. The computer-based solutions will complement original GMA to consistently perform accurate and efficient screening and diagnosis that may become universally accessible in daily clinical practice in the future.


Assuntos
Paralisia Cerebral/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Movimento/fisiologia , Paralisia Cerebral/fisiopatologia , Desenvolvimento Infantil/fisiologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Programas de Rastreamento/métodos , Projetos Piloto , Estudos Prospectivos , Gravação em Vídeo
17.
Int J Comput Assist Radiol Surg ; 16(4): 579-588, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33770362

RESUMO

PURPOSE: The main purpose of this work was to develop an efficient approach for segmentation of structures that are relevant for diagnosis and treatment of obstructive sleep apnea syndrome (OSAS), namely pharynx, tongue, and soft palate, from mid-sagittal magnetic resonance imaging (MR) data. This framework will be applied to big data acquired within an on-going epidemiological study from a general population. METHODS: A deep cascaded framework for subsequent segmentation of pharynx, tongue, and soft palate is presented. The pharyngeal structure was segmented first, since the airway was clearly visible in the T1-weighted sequence. Thereafter, it was used as an anatomical landmark for tongue location. Finally, the soft palate region was extracted using segmented tongue and pharynx structures and used as input for a deep network. In each segmentation step, a UNet-like architecture was applied. RESULTS: The result assessment was performed qualitatively by comparing the region boundaries obtained from the expert to the framework results and quantitatively using the standard Dice coefficient metric. Additionally, cross-validation was applied to ensure that the framework performance did not depend on the specific selection of the validation set. The average Dice coefficients on the test set were [Formula: see text], [Formula: see text], and [Formula: see text] for tongue, pharynx, and soft palate tissues, respectively. The results were similar to other approaches and consistent with expert readings. CONCLUSION: Due to high speed and efficiency, the framework will be applied for big epidemiological data with thousands of participants acquired within the Study of Health in Pomerania as well as other epidemiological studies to provide information on the anatomical structures and aspects that constitute important risk factors to the OSAS development.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Palato Mole/diagnóstico por imagem , Apneia Obstrutiva do Sono/diagnóstico por imagem , Algoritmos , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Variações Dependentes do Observador , Palato Mole/fisiopatologia , Faringe/diagnóstico por imagem , Fatores de Risco , Apneia Obstrutiva do Sono/fisiopatologia , Língua/diagnóstico por imagem
18.
Sci Rep ; 11(1): 7072, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782451

RESUMO

Dendritic spines, small protrusions of the dendrites, enlarge upon LTP induction, linking morphological and functional properties. Although the role of actin in spine enlargement has been well studied, little is known about its relationship with mechanical membrane properties, such as membrane tension, which is involved in many cell processes, like exocytosis. Here, we use a 3D model of the dendritic spine to investigate how polymerization of actin filaments can effectively elevate the membrane tension to trigger exocytosis in a domain close to the tip of the spine. Moreover, we show that the same pool of actin promotes full membrane fusion after exocytosis and spine stabilization.


Assuntos
Actinas/fisiologia , Espinhas Dendríticas/fisiologia , Potenciação de Longa Duração , Animais
19.
Sci Rep ; 11(1): 4012, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597561

RESUMO

Dendritic spines change their size and shape spontaneously, but the function of this remains unclear. Here, we address this in a biophysical model of spine fluctuations, which reproduces experimentally measured spine fluctuations. For this, we characterize size- and shape fluctuations from confocal microscopy image sequences using autoregressive models and a new set of shape descriptors derived from circular statistics. Using the biophysical model, we extrapolate into longer temporal intervals and find the presence of 1/f noise. When investigating its origins, the model predicts that the actin dynamics underlying shape fluctuations self-organizes into a critical state, which creates a fine balance between static actin filaments and free monomers. In a comparison against a non-critical model, we show that this state facilitates spine enlargement, which happens after LTP induction. Thus, ongoing spine shape fluctuations might be necessary to react quickly to plasticity events.

20.
Res Dev Disabil ; 110: 103854, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33571849

RESUMO

BACKGROUND: The clinical and scientific value of Prechtl general movement assessment (GMA) has been increasingly recognised, which has extended beyond the detection of cerebral palsy throughout the years. With advancing computer science, a surging interest in developing automated GMA emerges. AIMS: In this scoping review, we focused on video-based approaches, since it remains authentic to the non-intrusive principle of the classic GMA. Specifically, we aimed to provide an overview of recent video-based approaches targeting GMs; identify their techniques for movement detection and classification; examine if the technological solutions conform to the fundamental concepts of GMA; and discuss the challenges of developing automated GMA. METHODS AND PROCEDURES: We performed a systematic search for computer vision-based studies on GMs. OUTCOMES AND RESULTS: We identified 40 peer-reviewed articles, most (n = 30) were published between 2017 and 2020. A wide variety of sensing, tracking, detection, and classification tools for computer vision-based GMA were found. Only a small portion of these studies applied deep learning approaches. A comprehensive comparison between data acquisition and sensing setups across the reviewed studies, highlighting limitations and advantages of each modality in performing automated GMA is provided. CONCLUSIONS AND IMPLICATIONS: A "method-of-choice" for automated GMA does not exist. Besides creating large datasets, understanding the fundamental concepts and prerequisites of GMA is necessary for developing automated solutions. Future research shall look beyond the narrow field of detecting cerebral palsy and open up to the full potential of applying GMA to enable an even broader application.


Assuntos
Paralisia Cerebral , Movimento , Paralisia Cerebral/diagnóstico , Computadores , Humanos , Aprendizado de Máquina , Exame Neurológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...