Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 20(3): 464-78, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405005

RESUMO

Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4 Å and 10 Å, either by cryo-electron microscopy or X-ray crystallography. In these density maps, the general arrangement of secondary structure elements (SSEs) is revealed, whereas their directionality and connectivity remain elusive. We demonstrate that the topology of proteins with up to 250 amino acids can be determined from such density maps when combined with a computational protein folding protocol. Furthermore, we accurately reconstruct atomic detail in loop regions and amino acid side chains not visible in the experimental data. The EM-Fold algorithm assembles the SSEs de novo before atomic detail is added using Rosetta. In a benchmark of 27 proteins, the protocol consistently and reproducibly achieves models with root mean square deviation values <3 Å.


Assuntos
Algoritmos , Substâncias Macromoleculares/química , Proteínas de Membrana/química , Modelos Moleculares , Biologia Molecular/métodos , Conformação Proteica , Software , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Dobramento de Proteína
2.
Biopolymers ; 97(9): 669-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22302372

RESUMO

EM-Fold was used to build models for nine proteins in the maps of GroEL (7.7 Å resolution) and ribosome (6.4 Å resolution) in the ab initio modeling category of the 2010 cryo-electron microscopy modeling challenge. EM-Fold assembles predicted secondary structure elements (SSEs) into regions of the density map that were identified to correspond to either α-helices or ß-strands. The assembly uses a Monte Carlo algorithm where loop closure, density-SSE length agreement, and strength of connecting density between SSEs are evaluated. Top-scoring models are refined by translating, rotating, and bending SSEs to yield better agreement with the density map. EM-Fold produces models that contain backbone atoms within SSEs only. The RMSD values of the models with respect to native range from 2.4 to 3.5 Å for six of the nine proteins. EM-Fold failed to predict the correct topology in three cases. Subsequently, Rosetta was used to build loops and side chains for the very best scoring models after EM-Fold refinement. The refinement within Rosetta's force field is driven by a density agreement score that calculates a cross-correlation between a density map simulated from the model and the experimental density map. All-atom RMSDs as low as 3.4 Å are achieved in favorable cases. Values above 10.0 Å are observed for two proteins with low overall content of secondary structure and hence particularly complex loop modeling problems. RMSDs over residues in secondary structure elements range from 2.5 to 4.8 Å.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Dobramento de Proteína , Proteínas/química , Modelos Moleculares , Estrutura Secundária de Proteína
3.
Structure ; 17(7): 990-1003, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604479

RESUMO

In medium-resolution (7-10 A) cryo-electron microscopy (cryo-EM) density maps, alpha helices can be identified as density rods whereas beta-strand or loop regions are not as easily discerned. We are proposing a computational protein structure prediction algorithm "EM-Fold" that resolves the density rod connectivity ambiguity by placing predicted alpha helices into the density rods and adding missing backbone coordinates in loop regions. In a benchmark of 11 mainly alpha-helical proteins of known structure a native-like model is identified in eight cases (rmsd 3.9-7.9 A). The three failures can be attributed to inaccuracies in the secondary structure prediction step that precedes EM-Fold. EM-Fold has been applied to the approximately 6 A resolution cryo-EM density map of protein IIIa from human adenovirus. We report the first topological model for the alpha-helical 400 residue N-terminal region of protein IIIa. EM-Fold also has the potential to interpret medium-resolution density maps in X-ray crystallography.


Assuntos
Microscopia Eletrônica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/química , Software , Adenovírus Humanos/química , Adenovírus Humanos/ultraestrutura , Algoritmos , Sequência de Aminoácidos , Animais , Bovinos , Biologia Computacional , Simulação por Computador , Microscopia Crioeletrônica , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Método de Monte Carlo , Conformação Proteica , Curva ROC , Rodopsina/química , Rodopsina/ultraestrutura , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...