Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 35(10): 2948-2963, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021250

RESUMO

Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , MicroRNAs/genética , Animais , Moléculas de Adesão Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Íntrons , Camundongos
2.
Cell Stem Cell ; 23(1): 132-146.e9, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979988

RESUMO

Genes that regulate hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation are tightly controlled by regulatory regions. However, mapping such regions relies on surface markers and immunophenotypic definition of HSCs. Here, we use γ-retroviral integration sites (γRV ISs) from a gene therapy trial for 10 patients with Wiskott-Aldrich syndrome to mark active enhancers and promoters in functionally defined long-term repopulating HSCs. Integration site clusters showed the highest ATAC-seq signals at HSC-specific peaks and strongly correlated with hematopoietic risk variants. Tagged genes were significantly enriched for HSC gene sets. We were able to map over 3,000 HSC regulatory regions in late-contributing HSCs, and we used these data to identify miR-10a and miR-335 as two miRNAs regulating early hematopoiesis. In this study, we show that viral insertion sites can be used as molecular tags to assess chromatin conformation on functionally defined cell populations, thereby providing a genome-wide resource for regulatory regions in human repopulating long-term HSCs.


Assuntos
Cromatina/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Diferenciação Celular , Proliferação de Células , Terapia Genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patologia , Síndrome de Wiskott-Aldrich/terapia
3.
Cell Cycle ; 13(22): 3476-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483069

RESUMO

Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Células-Tronco Hematopoéticas , Sequências Reguladoras de Ácido Nucleico/genética , Epigênese Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
4.
Cell Stem Cell ; 15(4): 507-522, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25158935

RESUMO

In this study, we present integrated quantitative proteome, transcriptome, and methylome analyses of hematopoietic stem cells (HSCs) and four multipotent progenitor (MPP) populations. From the characterization of more than 6,000 proteins, 27,000 transcripts, and 15,000 differentially methylated regions (DMRs), we identified coordinated changes associated with early differentiation steps. DMRs show continuous gain or loss of methylation during differentiation, and the overall change in DNA methylation correlates inversely with gene expression at key loci. Our data reveal the differential expression landscape of 493 transcription factors and 682 lncRNAs and highlight specific expression clusters operating in HSCs. We also found an unexpectedly dynamic pattern of transcript isoform regulation, suggesting a critical regulatory role during HSC differentiation, and a cell cycle/DNA repair signature associated with multipotency in MPP2 cells. This study provides a comprehensive genome-wide resource for the functional exploration of molecular, cellular, and epigenetic regulation at the top of the hematopoietic hierarchy.


Assuntos
Metilação de DNA/genética , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Adulto , Diferenciação Celular/genética , Linhagem da Célula/genética , Análise por Conglomerados , Epigênese Genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Impressão Genômica , Células-Tronco Hematopoéticas/citologia , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...