Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.424
Filtrar
1.
Lancet Infect Dis ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964362

RESUMO

Nipah virus causes highly lethal disease, with case-fatality rates ranging from 40% to 100% in recognised outbreaks. No treatments or licensed vaccines are currently available for the prevention and control of Nipah virus infection. In 2019, WHO published an advanced draft of a research and development roadmap for accelerating development of medical countermeasures, including diagnostics, therapeutics, and vaccines, to enable effective and timely emergency response to Nipah virus outbreaks. This Personal View provides an update to the WHO roadmap by defining current research priorities for development of Nipah virus medical countermeasures, based primarily on literature published in the last 5 years and consensus opinion of 15 subject matter experts with broad experience in development of medical countermeasures for Nipah virus or experience in the epidemiology, ecology, or public health control of outbreaks of Nipah virus. The research priorities are organised into four main sections: cross-cutting issues (for those that apply to more than one category of medical countermeasures), diagnostics, therapeutics, and vaccines. The strategic goals and milestones identified in each section focus on key achievements that are needed over the next 6 years to ensure that the necessary tools are available for rapid response to future outbreaks of Nipah virus or related henipaviruses.

3.
Pharmgenomics Pers Med ; 17: 319-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952778

RESUMO

Background: Lung cancer is the leading cause of cancer deaths worldwide, primarily due to lung adenocarcinoma (LUAD). However, the heterogeneity of programmed cell death results in varied prognostic and predictive outcomes. This study aimed to develop an LUAD evaluation marker based on cuproptosis-related lncRNAs. Methods: First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate, LASSO, and multivariate Cox regression analyses were conducted to construct cuproptosis-associated lncRNA models. LUAD patients were categorized into high-risk and low-risk groups using prognostic risk values. Kaplan-Meier analysis, PCA, GSEA, and nomograms were employed to evaluate and validate the results. Results: 7 cuproptosis-related lncRNAs were identified, and a risk model was created. High-risk tumors exhibited cuproptosis-related gene alterations in 95.54% of cases, while low-risk tumors showed alterations in 85.65% of cases, mainly involving TP53. The risk value outperformed other clinical variables and tumor mutation burden as a predictor of 1-, 3-, and 5-year overall survival. The cuproptosis-related lncRNA-based risk model demonstrated high validity for LUAD evaluation, potentially influencing individualized treatment approaches. Expression analysis of four candidate cuproptosis-related lncRNAs (AL606834.1, AL161431.1, AC007613.1, and LINC02835) in LUAD tissues and adjacent normal tissues revealed significantly higher expression levels of AL606834.1 and AL161431.1 in LUAD tissues, positively correlating with tumor stage, lymph node metastasis, and histopathological grade. Conversely, AC007613.1 and LINC02835 exhibited lower expression levels, negatively correlating with these factors. High expression of AL606834.1 and AL161431.1 indicated poor prognosis, while low expression of AC007613.1 and LINC02835 was associated with unfavorable outcomes. Univariate and multivariate analyses confirmed these lncRNAs as independent risk factors for LUAD prognosis. Conclusion: The 4 cuproptosis-related (lncRNAsAL606834.1, AL161431.1, AC007613.1, and LINC02835) can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.

4.
J Sci Food Agric ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953304

RESUMO

BACKGROUND: Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS: The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION: This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.

5.
BioData Min ; 17(1): 20, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951833

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a major microvascular complication of diabetes and has become the leading cause of end-stage renal disease worldwide. A considerable number of DN patients have experienced irreversible end-stage renal disease progression due to the inability to diagnose the disease early. Therefore, reliable biomarkers that are helpful for early diagnosis and treatment are identified. The migration of immune cells to the kidney is considered to be a key step in the progression of DN-related vascular injury. Therefore, finding markers in this process may be more helpful for the early diagnosis and progression prediction of DN. METHODS: The gene chip data were retrieved from the GEO database using the search term ' diabetic nephropathy '. The ' limma ' software package was used to identify differentially expressed genes (DEGs) between DN and control samples. Gene set enrichment analysis (GSEA) was performed on genes obtained from the molecular characteristic database (MSigDB. The R package 'WGCNA' was used to identify gene modules associated with tubulointerstitial injury in DN, and it was crossed with immune-related DEGs to identify target genes. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on differentially expressed genes using the 'ClusterProfiler' software package in R. Three methods, least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest (RF), were used to select immune-related biomarkers for diagnosis. We retrieved the tubulointerstitial dataset from the Nephroseq database to construct an external validation dataset. Unsupervised clustering analysis of the expression levels of immune-related biomarkers was performed using the 'ConsensusClusterPlus 'R software package. The urine of patients who visited Dongzhimen Hospital of Beijing University of Chinese Medicine from September 2021 to March 2023 was collected, and Elisa was used to detect the mRNA expression level of immune-related biomarkers in urine. Pearson correlation analysis was used to detect the effect of immune-related biomarker expression on renal function in DN patients. RESULTS: Four microarray datasets from the GEO database are included in the analysis : GSE30122, GSE47185, GSE99340 and GSE104954. These datasets included 63 DN patients and 55 healthy controls. A total of 9415 genes were detected in the data set. We found 153 differentially expressed immune-related genes, of which 112 genes were up-regulated, 41 genes were down-regulated, and 119 overlapping genes were identified. GO analysis showed that they were involved in various biological processes including leukocyte-mediated immunity. KEGG analysis showed that these target genes were mainly involved in the formation of phagosomes in Staphylococcus aureus infection. Among these 119 overlapping genes, machine learning results identified AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1 and FSTL1 as potential tubulointerstitial immune-related biomarkers. External validation suggested that the above markers showed diagnostic efficacy in distinguishing DN patients from healthy controls. Clinical studies have shown that the expression of AGR2, CX3CR1 and FSTL1 in urine samples of DN patients is negatively correlated with GFR, the expression of CX3CR1 and FSTL1 in urine samples of DN is positively correlated with serum creatinine, while the expression of DEFB1 in urine samples of DN is negatively correlated with serum creatinine. In addition, the expression of CX3CR1 in DN urine samples was positively correlated with proteinuria, while the expression of DEFB1 in DN urine samples was negatively correlated with proteinuria. Finally, according to the level of proteinuria, DN patients were divided into nephrotic proteinuria group (n = 24) and subrenal proteinuria group. There were significant differences in urinary AGR2, CCR2 and DEFB1 between the two groups by unpaired t test (P < 0.05). CONCLUSIONS: Our study provides new insights into the role of immune-related biomarkers in DN tubulointerstitial injury and provides potential targets for early diagnosis and treatment of DN patients. Seven different genes ( AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1, FSTL1 ), as promising sensitive biomarkers, may affect the progression of DN by regulating immune inflammatory response. However, further comprehensive studies are needed to fully understand their exact molecular mechanisms and functional pathways in DN.

6.
Ageing Res Rev ; 99: 102398, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955265

RESUMO

BACKGROUND: Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE: To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS: PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS: M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aß generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS: Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.

7.
Cell Biochem Biophys ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961034

RESUMO

Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.

8.
Bioorg Chem ; 150: 107604, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38981209

RESUMO

Nineteen flavonoids were isolated from the fruits of Psoralea corylifolia L., including a novel flavanol (3) and three novel isoflavones (12-14). Their chemical structures were unequivocally determined through comprehensive spectral data analysis. The anti-proliferative effect of the isolated flavonoids was assessed in vitro using the MTT assay. Molecular docking and ELISA were employed to determine the inhibitory effects of the active compounds on ALK5. Isobavachalcone was found to inhibit TGF-ß1 induced EMT in A549 cells by Wound healing assay and Transwell chamber assay. Immunofluorescence assay and Western blot assay showed that IBC could inhibit cytoskeleton rearrangement, reduce the phosphorylation of ALK5, ERK, and Smad, down-regulate Snail expression, and up-regulate E-cadherin expression in TGF-ß1 induced A549 cells, thereby exerting the potential inhibitory effects on epithelial-mesenchymal transition (EMT) process in A549 cells. The findings presented herein establish a fundamental basis for investigating the anti-proliferative and anti-metastatic properties of psoralen flavonoids in human non-small cell lung cancer.

9.
ChemMedChem ; : e202400329, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981670

RESUMO

In recent years, two-dimensional transition metal carbides, nitrides, and carbonitrides, termed as MXenes, have been widely applied in energy storage, photocatalysis and biomedicine owing to their unique physicochemical properties of large specific surface area, high electrical conductivity, excellent optical performance, good stability, etc. Moreover, due to their strong light absorption capacity in the first and second near-infrared bio-window, and their ability of being simply functionalized with multiple organic/inorganic materials, MXene biomaterials have shown great potential in the field of catalytic therapy. This review will summarize the common catalytic mechanism of MXene biomaterials and their latest applications in catalytic medicine such as tumor therapy, antibacterial and anti-inflammatory, and present the current challenges and opportunities in clinical translation for future development to promote the advancement of MXene biomaterials in the field of catalytic medicine.

10.
Ecol Evol ; 14(7): e70011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983702

RESUMO

Examining patterns of genetic diversity are crucial for conservation planning on endangered species, while inferring the underlying process of recent anthropogenic habitat modifications in the context potential long-term demographic changes remains challenging. The globally endangered scaly-sided merganser (SSME), Mergus squamatus, is endemic to a narrow range in Northeast Asia, and its population has recently been contracted into two main breeding areas. Although low genetic diversity has been suggested in the Russian population, the genetic status and demographic history of these individuals have not been fully elucidated. We therefore examined the genetic diversity and structure of the breeding populations of the SSME and investigated the relative importance of historical and recent demographic changes to the present-day pattern of genetic diversity. Using 10 nuclear microsatellite (SSR) markers and mitochondrial DNA (mtDNA) control region sequences, we found limited female-inherited genetic diversity and a high level of nuclear genetic diversity. In addition, analysis of both markers consistently revealed significant but weak divergence between the breeding populations. Inconsistent demographic history parameters calculated from mtDNA and bottleneck analysis results based on SSR suggested a stable historical effective population size. By applying approximate Bayesian computation, it was estimated that populations started to genetically diverge from each other due to recent fragmentation events caused by anthropogenic effects rather than isolation during Last Glacial Maximum (LGM) and post-LGM recolonization. These results suggest that limited historical population size and shallow evolutionary history may be potential factors contributing to the contemporary genetic diversity pattern of breeding SSME populations. Conservation efforts should focus on protecting the current breeding habitats from further destruction, with priority given to both the Russian and Chinese population, as well as restoring the connected suitable breeding grounds.

11.
Poult Sci ; 103(9): 103947, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38986358

RESUMO

Chickens exhibit extensive genetic diversity and are distributed worldwide. Different chicken breeds have evolved to thrive in diverse environmental conditions. However, research on the genetic mechanisms underlying chicken adaptation to extreme environments, such as tropical, frigid and drought-prone regions, remains limited. In this study, we conducted whole-genome sequencing of 240 individuals from six native chicken breeds in Xinjiang, China, as well as 4 publicly available chicken breeds inhabiting regions with varying annual precipitations, temperatures, and altitudes. Our analysis revealed several genetic variants among the examined breeds. Furthermore, we investigated the genetic diversity and population structure of breeds residing in extreme drought and temperature environments by comparing them. Notably, native chicken breeds exhibited different genetic diversity and population structures. Moreover, we identified candidate genes associated with chicken adaptability to the environment, such as CORO2A, CTNNA3, AGMO, GRID2, BBOX1, COL3A1, INSR, SOX5, MAP2 and PLPPR1. Additionally, pathways such as lysosome, cysteine and methionine metabolism, glycosaminoglycan degradation, and Wnt signaling may be play crucial roles in regulating chicken adaptation to drought environments. Overall, these findings contribute to our understanding of the genetic mechanisms governing chicken adaptation to extreme environments, and also offer insights for enhancing the resilience of chicken breeds to different climatic conditions.

12.
Nat Hum Behav ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987357

RESUMO

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

13.
Nurse Educ Pract ; 79: 104065, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996580

RESUMO

AIM: To identify latent profiles of narrative competence in nursing students and examine the association between the potential competence profiles and professional identity from a person-centred perspective. BACKGROUND: According to the Ring theory of personhood, nursing students can develop their professional identities from individual, relational and social aspects through interaction with patients, as well as listening to, understanding and responding to patients' disease narratives. However, few studies have examined the relationship between narrative competence and professional identity through the quantitative method. DESIGN: A cross-sectional analytic study. METHODS: A total of 472 nursing students responded to the survey between March and May 2023. The Professional Identity Questionnaire for Nurse Students and the Narrative Competence Scale were given to participants. Latent profile analysis was conducted to identify narrative competence profiles. The Bolck-Croon-Hagenaars method was used to analyse whether these latent profiles for narrative competence affected nursing students' general, individual, interpersonal and social professional identities. RESULTS: Latent profiles were identified as "low narrative competence" (12.1 %), "relatively low narrative competence" (39.9 %), "moderate narrative competence" (40.1 %) and "high narrative competence" (7.9 %). The profiles only show level differences rather than combinations of competence areas. These profiles had varying effects on the nursing students' general professional identities, as well as their individual, relational and social professional identities. CONCLUSION: This study highlights the significance of providing tailored guidance and support to nursing students, taking into account their unique narrative competency profile, to promote the formation of professional identity from individual, relational and social aspects. Nursing educators should effectively distinguish nursing students with inadequate narrative competence and value patients' disease narratives to promote narrative competence and professional identity.

14.
Acad Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38997882

RESUMO

RATIONALE AND OBJECTIVES: To explore the value of splenic hemodynamic parameters from low-dose one-stop dual-energy and perfusion CT (LD-DE&PCT) in non-invasively predicting high-risk esophageal varices (HREV) in cirrhotic patients. METHODS: We retrospectively analyzed cirrhotic patients diagnosed with esophageal varices (EV) through clinical, laboratory, imaging, and endoscopic examinations from September 2021 to December 2023 in our hospital. All patients underwent LD-DE&PCT to acquire splenic iodine concentration and perfusion parameters. Radiation dose was recorded. Patients were classified into non-HREV and HREV groups based on endoscopy. Univariate and multivariate logistic regression analysis were performed, and the prediction model for HREV was constructed. P < 0.05 was considered statistically significant. RESULTS: Univariate analysis revealed that significant differences were found in portal iodine concentration (PIC), blood flow (BF), permeability surface (PS), spleen volume (V-S), total iodine concentration (TIC), and total blood volume of the spleen (BV-S) between groups. TIC demonstrated the highest predictive value with an area under the curve (AUC) value of 0.87. Multivariate analysis showed that PIC, PS, and BV-S were independent risk factors for HREV. The logistic regression model for predicting HREV had an AUC of 0.93. The total radiation dose was 20.66 ± 4.07 mSv. CONCLUSION: Splenic hemodynamic parameters obtained from LD-DE&PCT can non-invasively and accurately assess the hemodynamic status of the spleen in cirrhotic patients with EV and predict the occurrence of HREV. Despite the retrospective study design and limited sample size of this study, these findings deserve further validation through prospective studies with larger cohorts.

16.
IEEE Trans Med Imaging ; PP2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949933

RESUMO

Radiology report generation (RRG) is crucial to save the valuable time of radiologists in drafting the report, therefore increasing their work efficiency. Compared to typical methods that directly transfer image captioning technologies to RRG, our approach incorporates organ-wise priors into the report generation. Specifically, in this paper, we propose Organ-aware Diagnosis (OaD) to generate diagnostic reports containing descriptions of each physiological organ. During training, we first develop a task distillation (TD) module to extract organ-level descriptions from reports. We then introduce an organ-aware report generation module that, for one thing, provides a specific description for each organ, and for another, simulates clinical situations to provide short descriptions for normal cases. Furthermore, we design an auto-balance mask loss to ensure balanced training for normal/abnormal descriptions and various organs simultaneously. Being intuitively reasonable and practically simple, our OaD outperforms SOTA alternatives by large margins on commonly used IU-Xray and MIMIC-CXR datasets, as evidenced by a 3.4% BLEU-1 improvement on MIMIC-CXR and 2.0% BLEU-2 improvement on IU-Xray.

17.
Expert Opin Drug Deliv ; : 1-15, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38946471

RESUMO

INTRODUCTION: Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED: This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION: While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.

18.
Comput Struct Biotechnol J ; 23: 2507-2515, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974887

RESUMO

The incidence of early-onset colorectal cancer (EOCRC) has increased significantly worldwide. Uncovering biomarkers that are unique to EOCRC is of great importance to facilitate the prevention and detection of this growing cancer subtype. Although efforts have been made in the data curation about CRC, there is no integrated platform that gives access to data specifically related to young CRC patients. Here, we constructed a user-friendly open integrated resource called CRCDB (URL: http://crcdb-hust.com) which contains multi-omics data of 785 EOCRC, 4898 late-onset CRCs (LOCRC), and 1110 normal control samples from tissue, whole blood, platelets, and serum exosomes. CRCDB manages the differential analysis, survival analysis, co-expression analysis, and immune cell infiltration comparison analysis results in different CRC groups. Meta-analysis results were also provided for users for further data interpretation. Using the resource in CRCDB, we identified that genes associated with the metabolic process were less expressed in EOCRC patients, while up regulated genes most associated with the mitosis process might play an important role in the molecular pathogenesis of LOCRC. Survival-related genes were most enriched in oxidoreduction pathways in EOCRC while in immune-related pathways in LOCRC. With all the data gathered and processed, we anticipate that CRCDB could be a practical data mining platform to help explore potential applications of omics data and develop effective prevention and therapeutic strategies for the specific group of CRC patients.

19.
Heliyon ; 10(12): e32294, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975147

RESUMO

Background: This study introduces a novel prognostic tool, the Disulfidoptosis-Related lncRNA Index (DRLI), integrating the molecular signatures of disulfidoptosis and long non-coding RNAs (lncRNAs) with the cellular heterogeneity of the tumor microenvironment, to predict clinical outcomes in patients with clear cell renal cell carcinoma (ccRCC). Methods: We analyzed 530 tumor and 72 normal samples from The Cancer Genome Atlas (TCGA), employing k-means clustering based on disulfidoptosis-associated gene expression to stratify ccRCC samples into prognostic groups. lncRNAs correlated with disulfidoptosis were identified and used to construct the DRLI, which was validated by Kaplan-Meier and receiver operating characteristic curves. We utilized single-cell deconvolution analysis to estimate the proportion of immune cell types within the tumor microenvironment, while the ESTIMATE and TIDE algorithms were employed to assess immune infiltration and potential response to immunotherapy. Results: The Disulfidoptosis-Related lncRNA Index (DRLI) effectively stratified ccRCC patients into high and low-risk groups, significantly impacting survival outcomes (P < 0.001). High-risk patients, marked by a unique lncRNA profile associated with disulfidoptosis, faced worse prognoses. Single-cell analysis revealed marked tumor microenvironment heterogeneity, especially in immune cell makeup, correlating with patient risk levels. In prognostic predictions, DRLI outperformed traditional clinical indicators, achieving AUC values of 0.779, 0.757, and 0.779 for 1-year, 3-year, and 5-year survival in the training set, and 0.746, 0.734, and 0.750 in the validation set. Notably, while the constructed nomogram showed exceptional predictive capability for short-term prognosis (AUC = 0.877), the DRLI displayed remarkable long-term predictive accuracy, with its AUC value reaching 0.823 for 10-year survival, closely approaching the nomogram's performance. Conclusions: The study introduces the DRLI as a groundbreaking molecular stratification tool for ccRCC, enhancing prognostic precision and potentially guiding personalized treatment strategies. This advancement is particularly significant in the context of long-term survival predictions. Our findings also elucidate the complex interplay between disulfidoptosis, lncRNAs, and the immune microenvironment in ccRCC, offering a comprehensive perspective on its pathogenesis and progression. The DRLI and the nomogram together represent significant strides in ccRCC research, highlighting the importance of molecular-based assessments in predicting patient outcomes.

20.
Biosens Bioelectron ; 262: 116550, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38976958

RESUMO

Circulating tumor cell (CTC) has been a valuable biomarker for the diagnosis of breast cancer, while folate receptor is a kind of cell surface receptor glycoprotein which is overexpressed in breast cancer. In this work, we have designed and fabricated an electrochemical biosensor for sensitive detection of folate receptor-positive CTCs based on mild reduction assisted CRISPR/Cas system. Specifically, folate functionalized magnetic beads are firstly prepared to capture CTCs owing to the strong affinity between folate and the folate receptors on the surface of cells. Then, the cell membranes are treated by mild reduction so as to expose a large number of free sulfhydryl groups, which can be coupled with maleimide-DNA to introduce the signal amplified CRISPR/Cas12a system. After the trans-cleavage activity of CRISPR/Cas12a is activated, the long chain DNA modified with electroactive molecules methylene blue can be randomly cleaved into short DNA fragments, which are then captured on the graphite electrode through the host-guest recognition with cucurbit [7]uril, generating highly amplified electrochemical signal corresponding to the number of CTCs. The electrochemical biosensor not only demonstrates the sensitivity with a low detection limit of 2 cells/mL, but also highlights its excellent selectivity and stability in complex environment. Therefore, our biosensor may provide an alternative tool for the analysis of CTCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...