Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Adv Sci (Weinh) ; : e2403451, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970167

RESUMO

Statins, the first-line medication for dyslipidemia, are linked to an increased risk of type 2 diabetes. But exactly how statins cause diabetes is yet unknown. In this study, a developed short-term statin therapy on hyperlipidemia mice show that hepatic insulin resistance is a cause of statin-induced diabetes. Statin medication raises the expression of progesterone and adiponectin receptor 9 (PAQR9) in liver, which inhibits insulin signaling through degradation of protein phosphatase, Mg2+/Mn2+ dependent 1 (PPM1α) to activate ERK pathway. STIP1 homology and U-box containing protein 1 (STUB1) is found to mediate ubiquitination of PPM1α promoted by PAQR9. On the other hand, decreased activity of hepatocyte nuclear factor 4 alpha (HNF4α) seems to be the cause of PAQR9 expression under statin therapy. The interventions on PAQR9, including deletion of PAQR9, caloric restriction and HNF4α activation, are all effective treatments for statin-induced diabetes, while liver specific over-expression of PPM1α is another possible tactic. The results reveal the importance of HNF4α-PAQR9-STUB1-PPM1α axis in controlling the statin-induced hepatic insulin resistance, offering a fresh insight into the molecular mechanisms underlying statin therapy.

2.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894323

RESUMO

In this work, pure phase and carbon/ZnSn(OH)6 samples were synthesized by a hydrothermal method. The composite sample's structure, morphology, and functional groups were investigated by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Subsequently, ZnSn(OH)6 samples were modified with different carbon contents, and their humidity-sensing properties were investigated. The introduction of carbon increased the specific surface area of pure ZnSn(OH)6 samples, thus significantly improving the sensors' humidity sensing response. The C10-ZnSn(OH)6 sensor exhibited a high response, up to three orders of magnitude, a humidity hysteresisof 13.5%, a fast response time of 3.2 s, and a recovery time of 24.4 s. The humidity sensor's possible humidity sensing mechanism was also analyzed using the AC complex impedance puissance method with a simulated equivalent circuit. These results revealed that ZnSn(OH)6 can effectively detect ambient humidity and that the introduction of carbon significantly improves its humidity-sensing performance. The study provides an effective strategy for understanding and designing ZnSn(OH)6-based humidity sensors.

3.
J Appl Stat ; 51(7): 1251-1270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835825

RESUMO

The accelerated hazards model is one of the most commonly used models for regression analysis of failure time data and this is especially the case when, for example, the hazard functions may have monotonicity property. Correspondingly a large literature has been established for its estimation or inference when right-censored data are observed. Although several methods have also been developed for its inference based on interval-censored data, they apply only to limited situations or rely on some assumptions such as independent censoring. In this paper, we consider the situation where one observes case K interval-censored data, the type of failure time data that occur most in, for example, medical research such as clinical trials or periodical follow-up studies. For inference, we propose a sieve borrow-strength method and in particular, it allows for informative censoring. The asymptotic properties of the proposed estimators are established. Simulation studies demonstrate that the proposed inference procedure performs well. The method is applied to a set of real data set arising from an AIDS clinical trial.

4.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891409

RESUMO

The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.

5.
Cell Death Dis ; 15(6): 448, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918408

RESUMO

Multiple sevoflurane exposures may damage the developing brain. The neuroprotective function of dexmedetomidine has been widely confirmed in animal experiments and human studies. However, the effect of dexmedetomidine on the glymphatic system has not been clearly studied. We hypothesized that dexmedetomidine could alleviate sevoflurane-induced circulatory dysfunction of the glymphatic system in young mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 2 h daily, continuously for 3 days. Intraperitoneal injection of either normal saline or dexmedetomidine was administered before every anaesthesia. Meanwhile the circulatory function of glymphatic system was detected by tracer injection at P8 and P32. On P30-P32, behavior tests including open field test, novel object recognition test, and Y-maze test were conducted. Primary astrocyte cultures were established and treated with the PI3K activator 740Y-P, dexmedetomidine, and small interfering RNA (siRNA) to silence ΔFosB. We propose for the first time that multiple exposure to sevoflurane induces circulatory dysfunction of the glymphatic system in young mice. Dexmedetomidine improves the circulatory capacity of the glymphatic system in young mice following repeated exposure to sevoflurane through the PI3K/AKT/ΔFosB/AQP4 signaling pathway, and enhances their long-term learning and working memory abilities.


Assuntos
Aquaporina 4 , Dexmedetomidina , Sistema Glinfático , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sevoflurano , Transdução de Sinais , Animais , Dexmedetomidina/farmacologia , Sevoflurano/farmacologia , Sevoflurano/efeitos adversos , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Transdução de Sinais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino
6.
Neurochem Res ; 49(8): 2228-2248, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833090

RESUMO

Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.


Assuntos
Citosol , DNA Mitocondrial , Proteínas de Membrana , Neurônios , Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , DNA Mitocondrial/metabolismo , Animais , Neurônios/metabolismo , Citosol/metabolismo , Transdução de Sinais/fisiologia , Camundongos , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Hipocampo/metabolismo
7.
Food Funct ; 15(12): 6597-6609, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38809131

RESUMO

Metabolic Syndrome (MetS) during pregnancy can lead to complications such as gestational diabetes mellitus (GDM) and hypertensive disorders. In this study, we sought to examine the influence of dietary fiber, from both food sources and soluble fiber supplementation, on the metabolic health and overall pregnancy outcomes of women at high risk of MetS. We conducted a randomized controlled trial involving 376 women between 11 and 13 weeks of gestation. To evaluate dietary fiber intake, we performed an exhaustive dietary component analysis using a food frequency questionnaire. Additionally, the participants in the intervention group received daily soluble fiber supplements until delivery. All participants underwent nutritional consultations and metabolic health assessments at three distinct stages of pregnancy (GW 11-13, GW 24-26, and GW 32-34). Our findings revealed a significant correlation between insufficient dietary fiber intake and an increased risk of GDM, even after adjusting for variables such as maternal age and pre-pregnancy BMI. We also noted that a high total dietary fiber intake was associated with reduced changes in triglyceride levels. In addition, the intervention group showed lower need for constipation medication, and soluble fiber supplementation may offer potential benefits for GDM patients. Importantly, our study verified the safety of long-term soluble fiber supplementation during pregnancy. Our results underscore the importance of adequate fiber intake, particularly from dietary sources, for the metabolic health of pregnant women. Moreover, our findings suggest that early fiber supplementation may benefit pregnant women experiencing constipation or those diagnosed with GDM.


Assuntos
Fibras na Dieta , Síndrome Metabólica , Humanos , Feminino , Gravidez , Adulto , Diabetes Gestacional , Saúde Materna , Suplementos Nutricionais , Triglicerídeos/sangue
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2434-2440, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812152

RESUMO

The quality control of Chinese medicinal decoction pieces is one of the key tasks in the traditional Chinese medicine industry. In this study, multi-source information fusion was employed to fuse the data from near-infrared spectroscopy, electronic tongues, and other tests and establish an overall quality consistency evaluation method for Atractylodis Macrocephalae Rhizoma, which provided methodological support for the overall quality evaluation of Atractylodis Macrocephalae Rhizoma. The near-infrared spectroscopy information was measured in both static and dynamic states for 23 batches of Atractylodis Macrocephalae Rhizoma samples from different sources, and the electronic tongue sensory information, moisture content, and leachate content were measured. The overall quality of Atractylodis Macrocephalae Rhizoma was evaluated by multi-source information fusion. The results showed that the near-infrared spectroscopy information of 16122103, 801000509, 801000352, 701003656, HX21L01, and 160956 was different from that of other batches of Atractylodis Macrocephalae Rhizoma powder in the static state, and 701003298, 16122103, 701003656, 701003107, 801000229, and 18090404 were the different batches in the dynamic state. The moisture content showed no significant difference between batches. The leachate content in the batch 801000509 was different from that in other batches. The electronic tongue sensory information of 150721004, 151237, 160703004, HX21M01, HX21K04, HX21K01, and 601003516 was different from that of other batches. Furthermore, data layer fusion was employed to analyze the overall quality of Atractylodis Macrocephalae Rhizoma. Four batches, 150721004, HX21M01, HX21K04, and HX21K01, showed the parameters exceeding the 95% control limits and differed from the other samples in terms of the overall quality. This study integrated the information of moisture, near-infrared spectroscopy, and other sources to evaluate the quality consistency among 23 batches of Atractylodis Macrocephalae Rhizoma samples, which provides a reference for the quality consistency evaluation of Chinese medicinal decoction pieces.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Controle de Qualidade , Rizoma , Espectroscopia de Luz Próxima ao Infravermelho , Rizoma/química , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/normas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816687

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/enzimologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Camundongos , Infecções por Escherichia coli/microbiologia , Virulência , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Peptidoglicano/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Humanos , Modelos Animais de Doenças
10.
J Environ Manage ; 359: 121077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718604

RESUMO

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Assuntos
Microplásticos , Bifenil Polibromatos , Esgotos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Microplásticos/toxicidade , Anaerobiose , Espécies Reativas de Oxigênio/metabolismo
11.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605351

RESUMO

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Assuntos
Genomas de Plastídeos , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósseis , Teorema de Bayes , Plastídeos/genética
12.
Adv Sci (Weinh) ; 11(23): e2401889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554399

RESUMO

All-solid-state batteries (ASSBs) based on inorganic solid electrolytes fascinate a large body of researchers in terms of overcoming the inferior energy density and safety issues of existing lithium-ion batteries. To date, the cathode designs in the ASSBs achieve remarkable achievements, adding the urgency of scaling up the battery system toward inorganic solid-state pouch cell configuration for the application market. Herein, the recent developments of cathode materials and the design considerations for their application in the pouch cell format are reviewed to straighten out the roadmap of ASSBs. Specifically, the intercalation compounds and the conversion materials with conversion chemistries are highlighted and discussed as two potentially valuable material types. This review focuses on the basic electrochemical mechanisms, mechanical contact issues, and sheet-type structure in inorganic solid-state pouch cells with corresponding perspectives, thus guiding the future research direction. Finally, the benchmarks for manufacturing inorganic solid-state pouch cells to meet practical high energy density targets are provided in this review for the development of commercially viable products.

13.
Water Res ; 252: 121209, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309058

RESUMO

Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.


Assuntos
Oxigênio , Purificação da Água , Temperatura , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Esgotos/microbiologia , Nitrificação , Purificação da Água/métodos , Nitrogênio/metabolismo , Água , Desnitrificação
14.
Mar Environ Res ; 196: 106394, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340371

RESUMO

Variability in coral hosts susceptibility to Vibrio coralliilyticus is well-documented; however, the comprehensive understanding of tolerance of response to pathogen among coral species is lacked. Herein, we investigated the microbial communities and transcriptome dynamics of two corals in response to Vibrio coralliilyticus. Favites halicora displayed greater resistance to Vibrio coralliilyticus challenge than Pocillopora damicornis. Furthermore, the relative abundances of Flavobacteriaceae, Vibrionacea, Rhodobacteraceae, and Roseobacteraceae increased significantly in Favites halicora following pathogen stress, whereas that of Akkermansiaceae increased significantly in Pocillopora damicornis, leading to bacterial community imbalance. In contrast to the previous results, pathogen infection did not have much effect on the community structures of Symbiodiniaceae and fungi, but led to a decrease in the density of Symbiodiniaceae. Transcriptome analysis indicated that Vibrio infection triggered a coral immune response, resulting in higher expression of immune-related genes, which appeared to have higher transcriptional plasticity in Favites halicora than in Pocillopora damicornis. Specifically, the upregulated genes of Favites halicora were predominantly involved in the apoptosis pathway, whereas Pocillopora damicornis were significantly enriched in the nucleotide excision repair and base excision repair pathways. These findings suggest that coral holobionts activate different mechanisms across species in response to pathogens through shifts in microbial communities and transcriptomes, which provides novel insight into assessing the future coral assemblages suffering from disease outbreaks.


Assuntos
Antozoários , Microbiota , Vibrio , Animais , Antozoários/genética , Vibrio/fisiologia , Transcriptoma , Recifes de Corais
15.
Mar Environ Res ; 196: 106403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335857

RESUMO

White Plague Type II (WPL II) is a disease increasingly affecting scleractinian coral species and progresses rapidly. However, the etiological pathogen and remedy remain elusive. In this study, transmission experiments demonstrated that Aureimonas altamirensis and Aurantimonas coralicida, representing the WPL II pathogens, could infect Pocillopora damicorni. The infection produced selected pathological symptoms, including bleaching, tissue loss, and decolorization. Furthermore, ammonia degradation significantly reduced the severity of infection by these pathogens, indicating that ammonia may be a virulence factor for WPL II. Coral microbiome analysis suggested that ammonia degradation mediates the anti-white plague effect by maintaining the density of Symbiodiniaceae and stabilizing the core and symbiotic bacteria. Aureimonas altamirensis and Aurantimonas coralicida have been shown to cause diseases of P. damicornis, with ammonia acting as a virulence factor, and ammoniac degradation may be a promising and innovative approach to mitigate coral mortality suffering from increasing diseases.


Assuntos
Alphaproteobacteria , Antozoários , Animais , Amônia/metabolismo , Antozoários/metabolismo , Recifes de Corais , Fatores de Virulência/metabolismo
16.
Dalton Trans ; 53(9): 4108-4118, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38315056

RESUMO

Due to the increasing demand for higher security and low-cost energy storage systems, the main research focus has been developing a suitable substitute for lithium-ion batteries. Aqueous zinc ion batteries (AZIBs) are considered the best alternative to lithium-ion batteries in large-scale energy storage devices. Owing to its high capacity, vanadate is a promising cathode material for AZIBs. The crystallographic orientation of cathode materials dramatically influences the rate performance and cycling life. Here, Mg0.57V5O12·2.3H2O (MgVO) with favorable (001) crystal orientation and significantly improved electrochemical performance is prepared by a simple stirring method. The crystal growth orientations of MgVO are altered by adjusting the aging time of the reactant solution. The (001)-orientated grain growth of MgVO delivers a 232.5 mA h g-1 capacity at 5 A g-1 with a 94% capacity retention rate after 1400 cycles. The zinc ion storage performance of MgVO demonstrates that the orientation-controlled method can design effective cathode materials for high-performance ZIBs.

18.
Adv Mater ; 36(21): e2312880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330999

RESUMO

While layered metal oxides remain the dominant cathode materials for the state-of-the-art lithium-ion batteries, conversion-type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy-dense next-generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium-sulfur (Li-S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack. Here these key technical challenges are addressed by molecular engineering of the Li metal for hydrophobicization, fluorination and thus favorable anode chemistry. The introduced tris(2,4-di-tert-butylphenyl) phosphite (TBP) and tetrabutylammonium fluoride (TBA+F-) as well as cellulose membrane by rolling enables the formation of a functional thin layer that eliminates the vulnerability of Li metal towards the already demanding environment required (1.55% relative humidity) for cell production and gives rise to LiF-rich solid electrolyte interphase (SEI) to suppress dendrite growth. As a result, Li-S pouch cells assembled at a pilot production line survive 400 full charge/discharge cycles with an average Coulombic efficiency of 99.55% and impressive rate performance of 1.5 C. A cell-level energy density of 417 Wh kg-1 and power density of 2766 W kg-1 are also delivered via multilayer Li-S pouch cell. The Li-S battery pack can even power an unmanned aerial vehicle of 3 kg for a fairly long flight time. This work represents a big step forward acceleration in Li-S battery marketization for future energy storage featuring improved safety, sustainability, higher energy density as well as reduced cost.

19.
J Microbiol Immunol Infect ; 57(2): 269-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278671

RESUMO

BACKGROUND: A new sublineage of emm1 group A Streptococcus (GAS), M1UK, has emerged in Europe, North America, and Australia. Notably, a significant portion of emm1 isolates in Asia, particularly in Hong Kong and mainland China, acquired scarlet fever-associated prophages following the 2011 Hong Kong scarlet fever outbreak. However, the presence of the M1UK sublineage has not yet been detected in Asia. METHODS: This study included 181 GAS isolates (2011-2021). The emm type of these isolates were determined, and 21 emm1 isolates from blood or pleural fluid (2011-2021) and 10 emm1 isolates from throat swabs (2016-2018) underwent analysis. The presence of the scarlet fever-associated prophages and the specific single nucleotide polymorphisms of the M1UK clone were determined by polymerase chain reaction and the genome sequencing. RESULTS: The M1UK lineage strains from throat swab and blood samples were identified. One of the M1UK strain in Taiwan carried the scarlet fever-associated prophage and therefore acquired the ssa, speC, and spd1 toxin repertoire. Nonetheless, the increase of M1UK was not observed until 2021, and there was a reduction in the diversity of emm types in 2020-2021, possibly due to the COVID-19 pandemic restriction policies in Taiwan. CONCLUSIONS: Our results suggested that the M1UK lineage clone has introduced in Taiwan. In Taiwan, the COVID-19 restrictions were officially released in March 2023; therefore, it would be crucial to continuously monitor the M1UK expansion and its related diseases in the post COVID-19 era.


Assuntos
COVID-19 , Escarlatina , Infecções Estreptocócicas , Humanos , Escarlatina/epidemiologia , Taiwan/epidemiologia , Pandemias , Proteínas da Membrana Bacteriana Externa/genética , Streptococcus pyogenes/genética , COVID-19/epidemiologia , Reino Unido , Antígenos de Bactérias/genética , Infecções Estreptocócicas/epidemiologia
20.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256727

RESUMO

Many customers prefer goji berry pulp, well-known for its high nutritional content, over fresh goji berries. However, there is limited research on its sensory lexicon and distinctive flavor compounds. This study focused on developing a sensory lexicon for goji berry pulp and characterizing its aroma by sensory and instrumental analysis. Sensory characteristics of goji berry pulp were evaluated by our established lexicon. A total of 83 aromatic compounds in goji berry pulp were quantified using HS-SPME-GC-Orbitrap-MS. By employing OAV in combination, we identified 17 aroma-active compounds as the key ingredients in goji berry pulp. Then, we identified the potentially significant contributors to the aroma of goji berry pulp by combining principal component analysis and partial least squares regression (PLSR) models of aroma compounds and sensory attributes, which included 3-ethylphenol, methyl caprylate, 2-hydroxy-4-methyl ethyl valerate, benzeneacetic acid, ethyl ester, hexanal, (E,Z)-2,6-nonadienal, acetylpyrazine, butyric acid, 2-ethylhexanoic acid, 2-methyl-1-propanol, 1-pentanol, phenylethyl alcohol, and 2-nonanone. This study provides a theoretical basis for improving the quality control and processing technology of goji berry pulp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...