Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38986535

RESUMO

Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.

3.
Front Pharmacol ; 15: 1423629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989149

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignancy with high incidence in China. Due to the lack of effective molecular targets, the prognosis of ESCC patients is poor. It is urgent to explore the pathogenesis of ESCC to identify promising therapeutic targets. Metabolic reprogramming is an emerging hallmark of ESCC, providing a novel perspective for revealing the biological features of ESCC. In the hypoxic and nutrient-limited tumor microenvironment, ESCC cells have to reprogram their metabolic phenotypes to fulfill the demands of bioenergetics, biosynthesis and redox homostasis of ESCC cells. In this review, we summarized the metabolic reprogramming of ESCC cells that involves glucose metabolism, lipid metabolism, and amino acid metabolism and explore how reprogrammed metabolism provokes novel opportunities for biomarkers and potential therapeutic targets of ESCC.

4.
Exp Biol Med (Maywood) ; 249: 10129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993198

RESUMO

Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD.


Assuntos
Biologia Computacional , Transtorno Depressivo Maior , Biologia de Sistemas , Humanos , Transtorno Depressivo Maior/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Neuralgia/genética , Neuralgia/metabolismo , Redes Reguladoras de Genes , Ontologia Genética , Mapas de Interação de Proteínas/genética , Bases de Dados Genéticas
5.
Dokl Biochem Biophys ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002014

RESUMO

The direct antitumor effect of bevacizumab (BEV) has long been debated. Evidence of the direct antitumor activities of drugs are mainly obtained from in vitro experiments, which are greatly affected by experimental conditions. In this study, we evaluated the effect of BEV-containing medium renewal on the results of in vitro cytotoxicity experiments in A549 and U251 cancer cells. We observed starkly different results between the experiments with and without BEV-containing medium renewal. Specifically, BEV inhibited the tumor cell growth in the timely replacement with a BEV-containing medium but promoted tumor cell growth without medium renewal. Meanwhile, compared with the control, a significant basic fibroblast growth factor (bFGF) accumulation in the supernatant was observed in the group without medium renewal but none in that with replaced medium. Furthermore, bFGF neutralization partially reversed the pro-proliferative effect of BEV in the medium non-renewed group, while exogenous bFGF attenuated the tumor cell growth inhibition of BEV in the medium-renewed group. Our data explain the controversy over the direct antitumor effect of BEV in different studies from the perspective of the compensatory autocrine cytokines in tumor cells.

6.
Front Pharmacol ; 15: 1405545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978978

RESUMO

Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, ß2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.

7.
Front Psychiatry ; 15: 1365231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979499

RESUMO

Background: Neurodevelopmental disorders (NDDs) can cause debilitating impairments in social cognition and aberrant functional connectivity in large-scale brain networks, leading to social isolation and diminished everyday functioning. To facilitate the treatment of social impairments, animal models of NDDs that link N- methyl-D-aspartate receptor (NMDAR) hypofunction to social deficits in adulthood have been used. However, understanding the etiology of social impairments in NDDs requires investigating social changes during sensitive windows during development. Methods: We examine social behavior during adolescence using a translational mouse model of NMDAR hypofunction (SR-/-) caused by knocking out serine racemase (SR), the enzyme needed to make D-serine, a key NMDAR coagonist. Species-typical social interactions are maintained through brain-wide neural activation patterns; therefore, we employed whole-brain cFos activity mapping to examine network-level connectivity changes caused by SR deletion. Results: In adolescent SR-/- mice, we observed disinhibited social behavior toward a novel conspecific and rapid social habituation toward familiar social partners. SR-/- mice also spent more time in the open arm of the elevated plus maze which classically points to an anxiolytic behavioral phenotype. These behavioral findings point to a generalized reduction in anxiety-like behavior in both social and non-social contexts in SR-/- mice; importantly, these findings were not associated with diminished working memory. Inter-regional patterns of cFos activation revealed greater connectivity and network density in SR-/- mice compared to controls. Discussion: These results suggest that NMDAR hypofunction - a potential biomarker for NDDs - can lead to generalized behavioral disinhibition in adolescence, potentially arising from disrupted communication between and within salience and default mode networks.

8.
Heliyon ; 10(11): e32532, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961935

RESUMO

Background: Although previous studies have reported a bidirectional relationship between ischemic stroke (IS) and epilepsy, the existence of a causal nexus and its directionality remains a topic of controversy. Methods: The single nucleotide polymorphisms (SNPs) associated with IS were extracted from the Genome-Wide Association Study (GWAS) database. Pooled genetic data encompassing all epilepsy cases, as well as generalized and focal epilepsy subtypes, were acquired from the International League Against Epilepsy's GWAS study. In this study, the primary analysis approach utilized the inverse variance weighting (IVW) method as the main analytical technique. To enhance the robustness of the findings against potential pleiotropy, additional sensitivity analyses were conducted. Results: In the forward analysis, the IVW method demonstrated that IS was associated with an increased risk of all epilepsy (odds ratio (OR) = 1.127, 95 % confidence interval (CI) = 1.038-1.224, P = 0.004) and generalized epilepsy (IVW: OR = 1.340, 95 % CI = 1.162-1.546, P = 5.70 × 10-5). There was no substantial causal relationship observed between IS and focal epilepsy (P > 0.05). Furthermore, generalized epilepsy, focal epilepsy, and all epilepsy did not show a causal relationship with IS. Conclusion: This Mendelian randomization (MR) analysis demonstrates that IS increases the risk of developing epilepsy, especially generalized epilepsy. Conversely, no clear causal association was found between epilepsy and the onset of stroke. Therefore, the possible mechanisms of the effect of epilepsy on the pathogenesis of IS still need to be further investigated.

9.
Poult Sci ; 103(8): 103960, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38964270

RESUMO

Danzhou chicken (DZ) is a local breed in China noted for its strong adaptability, roughage resistance, strong wildness, and delicious taste, thus containing important genetic resources. In this study, genome re-sequencing data was generated from 200 DZ chickens. Combined with previously generated data from 72 additional chickens across six other exotic and local breeds, these data were used to systematically evaluate the germplasm characteristics of DZ chickens from a genomic perspective. Unlike exotic breeds, both DZ and southern local chicken varieties exhibited high genetic diversity, and the genetic distance between DZ and southern local chickens was smaller than the genetic distance between DZ and exotic chickens. A reconstructed Neighbor-Joining phylogenetic tree indicated that all sampled populations clustered into single independent populations, with DZ chickens showing clear evidence of intra-population differentiation, forming 2 subpopulations. Principal component analysis and ADMIXTURE analysis showed that DZ was significantly different from other breeds. These results indicate that DZ is a unique genetic resource that is different from other southern native and exotic chickens. The results of the study will improve our understanding of the genetic structure and current status of the DZ breed, which is of great significance in promoting the conservation of genetic resources of DZ chickens and fostering breed innovations and genetic improvement.

10.
Inorg Chem ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965989

RESUMO

Solar photocatalytic H2 production from lignocellulosic biomass has attracted great interest, but it suffers from low photocatalytic efficiency owing to the absence of highly efficient photocatalysts. Herein, we designed and constructed ultrathin MoS2-modified porous TiO2 microspheres (MT) with abundant interface Ti-S bonds as photocatalysts for photocatalytic H2 generation from lignocellulosic biomass. Owing to the accelerated charge transfer related to Ti-S bonds, as well as the abundant active sites for both H2 and ●OH generation, respectively, related to the high exposed edge of MoS2 and the large specific surface area of TiO2, MT photocatalysts demonstrate good performance in the photocatalytic conversion of α-cellulose and lignocellulosic biomass to H2. The highest H2 generation rate of 849 µmol·g-1·h-1 and apparent quantum yield of 4.45% at 380 nm was achieved in α-cellulose aqueous solution for the optimized MT photocatalyst. More importantly, lignocellulosic biomass of corncob, rice hull, bamboo, polar wood chip, and wheat straw were successfully converted to H2 over MT photocatalysts with H2 generation rate of 10, 19, 36, 29, and 8 µmol·g-1·h-1, respectively. This work provides a guiding design approach to develop highly active photocatalysts via interface engineering for solar H2 production from lignocellulosic biomass.

11.
BMC Genomics ; 25(1): 701, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020295

RESUMO

BACKGROUND: Alfin-like proteins are a kind of plant-specific transcription factors, and play vital roles in plant growth, development and stress responses. RESULTS: In this study, a total of 27 Alfin-like transcription factors were identified in wheat. TaAL genes were unevenly distributed on chromosome. Phylogenetic analysis showed TaAL genes were divided into AL-B and AL-C subfamilies, and TaALs with closer evolutionary relationships generally shared more similar exon-intron structures and conserved motifs. The cis-acting element analysis showed MBS, ABRE and CGTCA-motif were the most common in TaAL promoters. The interacting proteins and downstream target genes of TaAL genes were also investigated in wheat. The transcriptome data and real-time PCR results indicated TaAL genes were differentially expressed under drought and salt stresses, and TaAL1-B was significantly up-regulated in response to drought stress. In addition, association analysis revealed that TaAL1-B-Hap-I allelic variation had significantly higher survival rate compared to TaAL1-B-Hap-II under drought stress. CONCLUSIONS: These results will provide vital information to increase our understanding of the Alfin-like gene family in wheat, and help us in breeding better wheat varieties in the future.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Triticum , Triticum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
12.
J Cell Mol Med ; 28(14): e18465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022816

RESUMO

Lung cancer (LC) is one of the malignancies with the highest incidence and mortality in the world, approximately 85% of which is non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) exert multiple roles in NSCLC occurrence and development. The sequencing results in previous literature have illustrated that multiple circRNAs exhibit upregulation in NSCLC. We attempted to figure out which circRNA exerts an oncogenic role in NSLCL progression. RT-qPCR evaluated circDHTKD1 level in NSCLC tissue specimens and cells. Reverse transcription as well as RNase R digestion assay evaluated circDHTKD1 circular characterization in NSCLC cells. FISH determined circDHTKD1 subcellular distribution in NSCLC cells. Loss- and gain-of-function assays clarified circDHTKD1 role in NSCLC cell growth, tumour growth and glycolysis. Bioinformatics and RIP and RNA pull-down assessed association of circDHTKD1 with upstream molecule Eukaryotic initiation factor 4A-III (EIF4A3) or downstream molecule phosphofructokinase-1 liver type (PFKL) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in NSCLC cells. Rescue assays assessed regulatory function of PFKL in circDHTKD1-meidated NSCLC cellular phenotypes. CircDHTKD1 exhibited upregulation and stable circular nature in NSCLC cells. EIF4A3 upregulated circDHTKD1 in NSCLC cells. CircDHTKD1 exerted a promoting influence on NSCLC cell malignant phenotypes and tumour growth. CircDHTKD1 exerted a promoting influence on NSCLC glucose metabolism. CircDHTKD1 exerts a promoting influence on NSCLC glucose metabolism through PFKL upregulation. RIP and RNA pull-down showed that circDHTKD1 could bind to IGF2BP, PFKL could bind to IGF2BP2, and circDHTKD1 promoted the binding of PFKL to IGF2BP2. In addition, RT-qPCR showed that IGF2BP2 knockdown promoted PFKL mRNA degradation, suggesting that IGF2BP2 stabilized PFKL in NSCLC cells. CircDHTKD1 exhibits upregulation in NSCLC. We innovatively validate that EIF4A3-triggered circDHTKD1 upregulation facilitates NSCLC glycolysis through recruiting m6A reader IGF2BP2 to stabilize PFKL, which may provide a new direction for seeking targeted therapy plans of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fator de Iniciação 4A em Eucariotos , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Pulmonares , RNA Circular , Proteínas de Ligação a RNA , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Glicólise/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos , Camundongos Nus , Masculino , Feminino , RNA Helicases DEAD-box
13.
J Agric Food Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024128

RESUMO

Anthocyanin (ACN)-derived pigmentation in the red Zanthoxylum bungeanum peel is an essential commercial trait. Therefore, exploring the metabolic regulatory networks involved in peel ACN levels in this species is crucial for improving its quality. However, its underlying transcriptional regulatory mechanisms are still unknown. This transcriptomic and bioinformatics study not only discovered a new TF (ZbMYB111) as a potential regulator for ACN biosynthesis in Z. bungeanum peel, but also deciphered the underlying molecular mechanisms of ACN biosynthesis. Overexpression of ZbMYB111 and flavonoid 3-O-glucosyltransferase (ZbUFGT) induced ACN accumulation in both Z. bungeanum peels and callus along with Arabidopsis thaliana and tobacco flowers, whereas their silencing impaired ACN biosynthesis. Therefore, the dual-luciferase reporter, yeast-one-hybrid, and electrophoretic mobility shift assays showed that ZbMYB111 directly interacted with the ZbUFGT promoter to activate its expression. This diverted the secondary metabolism toward the ACN pathway, thereby promoting ACN accumulation.

14.
Front Immunol ; 15: 1378130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021570

RESUMO

Brachio-cervical inflammatory myopathy (BCIM) is a rare inflammatory myopathy characterized by dysphagia, bilateral upper limb atrophy, limb-girdle muscle weakness, and myositis-specific antibody (MSA) negativity. BCIM has a low incidence and is commonly associated with autoimmune diseases. We present a case report of a 55-year-old man with progressive upper limb weakness and atrophy, diagnosed with flail arm syndrome (FAS). The initial electromyography revealed extensive spontaneous muscle activity and increased duration of motor unit potentials (MUPs). During follow-up, evidence of myogenic damage was observed, as indicated by a decreased duration of MUPs in the right biceps muscle. Laboratory and genetic testing ruled out hereditary or acquired diseases. Negative serological antibodies for myasthenia gravis. Hereditary or acquired diseases were ruled out through laboratory and genetic testing. Whole-body muscle magnetic resonance imaging (MRI) showed extensive edema and fat replacement in the bilateral upper limbs, scapular, and central axis muscles, while the lower extremities were relatively mildly affected. Muscle biopsy revealed numerous foci of inflammatory cells distributed throughout the muscle bundle, with predominant CD20, CD138, and CD68 expression, accompanied by a light infiltration of CD3 and CD4 expression. The muscle weakness improved with the combination of oral prednisone (initially 60 mg/day, tapered) and methotrexate (5 mg/week) treatment.


Assuntos
Erros de Diagnóstico , Miosite , Humanos , Pessoa de Meia-Idade , Masculino , Miosite/diagnóstico , Miosite/imunologia , Braço , Músculo Esquelético/patologia , Músculo Esquelético/imunologia , Debilidade Muscular/diagnóstico , Debilidade Muscular/etiologia , Atrofia Muscular/diagnóstico , Eletromiografia , Imageamento por Ressonância Magnética
15.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928355

RESUMO

The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/ß-Tricalcium phosphate (E-rhBMP-2/ß-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/ß-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/ß-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/ß-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.


Assuntos
Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Modelos Animais de Doenças , Osteócitos , Proteínas Recombinantes , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Osteócitos/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Camundongos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Humanos , Regeneração Óssea/efeitos dos fármacos , Masculino , Extração Dentária/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/patologia
16.
Angew Chem Int Ed Engl ; : e202406677, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825572

RESUMO

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.

17.
Angew Chem Int Ed Engl ; : e202410974, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940067

RESUMO

The development of polymer-based persistent luminescence materials with color-tunable organic afterglow and multiple responses is highly desirable for the applications in anti-counterfeiting, flexible displays and data-storage. However, achieving efficient persistent luminescence from a single-phosphor system with multiple responses remains a challenging task. Herein, a hierarchical dual-mode emission system is developed by doping 9H-pyrido[3,4-b]indole (PI2) into an amorphous polyacrylamide matrix, which exhibits color-tunable afterglow due to excitation-, temperature- and humidity-dependence. Notably, the coexistence of isolated state and J-aggregate state of the guest molecule not only provides excitation-dependent afterglow color, but also leads to hierarchical temperature-dependent afterglow color resulting from different thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) behaviors of the isolated and aggregated states. The complex responsiveness based on the hierarchical dual-mode emission can serve for security features through inkjet printing and ink-writing. These findings may provide further insight into the regulated persistent luminescence by isolated and aggregated phosphors in doped polymer systems and expand the scope of stimuli-responsive organic afterglow materials for broader applications.

18.
Biochem Pharmacol ; 225: 116335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824968

RESUMO

Drugs specifically targeting YKL-40, an over-expressed gene (CHI3L1) in various diseases remain developed. The current study is to create a humanized anti-YKL-40 neutralizing antibody and characterize its potentially therapeutic signature. We utilized in silico CDR-grafting bioinformatics to replace the complementarity determining regions (CDRs) of human IgG1 with mouse CDRs of our previously established anti-YKL-40 antibody (mAY). In fifteen candidates (VL1-3/VH1-5) of heavy and light chain variable region combination, one antibody L3H4 named Rosazumab demonstrated strong binding affinity with YKL-40 (KD = 4.645 × 10-8 M) and high homology with human IgG (80 %). In addition, we established different overlapping amino acid peptides of YKL-40 and found that Rosazumab specifically bound to residues K337, K342, and R344, the KR-rich functional domain of YKL-40. Rosazumab inhibited migration and tube formation of YKL-40-expressing tumor cells and induced tumor cell apoptosis. Mechanistically, Rosazumab induced interaction of N-cadherin with ß-catenin and activation of downstream MST1/RASSF1/Histone H2B axis, leading to chromosomal DNA breakage and cell apoptosis. Treatment of xenografted tumor mice with Rosazumab twice a week for 4 weeks inhibited tumor growth and angiogenesis, but induced tumor apoptosis. Rosazumab injected in mice distributed to blood, tumor, and other multiple organs, but did not impact in function or structure of liver and kidney, indicating non-detectable toxicity in vivo. Collectively, the study is the first one to demonstrate that a humanized YKL-40 neutralizing antibody offers a valuable means to block tumor development.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína 1 Semelhante à Quitinase-3 , Neoplasias , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/antagonistas & inibidores , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Cell Death Dis ; 15(6): 420, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886383

RESUMO

The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Osteogênese , Crânio , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Osteogênese/genética , Crânio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Suturas Cranianas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Biomarcadores/metabolismo
20.
Neuroscience ; 552: 152-158, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944147

RESUMO

OBJECTIVES: Our study aimed to evaluate the association between plasma human cartilage glycoprotein-39 (YKL-40) and stroke-specific mortality at two years in acute ischemic stroke patients according to the drinking status and amount of alcohol consumption. We further investigated the effect of the interaction between these conditions and YKL-40 levels on the outcome. METHODS: We measured plasma YKL-40 levels in 3267 participants from the China Antihypertensive Trial in Acute Ischemic Stroke. Outcome data on stroke-specific mortality were collected at two years after stroke onset. RESULTS: During the two years of follow-up, 208 (6.4 %) patients, including 44 drinkers and 164 nondrinkers, died of stroke-specific causes. The patients in the highest quartile of YKL-40 had a 3.52-fold (95 % CI: 1.15-10.76, P for trend = 0.006) risk of stroke-specific mortality compared with those in the lowest quartile among drinkers. However, no significant association between YKL-40 and the outcome was observed among nondrinkers (HR: 1.18, 95 % CI: 0.75-1.86, P for trend = 0.08). Alcohol drinking modified the effect of YKL-40 on the outcome (P for interaction = 0.04). Subgroup analyses revealed that each 1-unit increase in log-transformed YKL-40 was associated with a 72 % greater risk of stroke-specific mortality for light drinkers. This association was amplified with a 226 % increased risk of the outcome among heavy drinkers. CONCLUSIONS: Elevated YKL-40 levels were associated with an increased risk of stroke-specific mortality at two years among drinkers with ischemic stroke. Drinking status substantially modified the effect of plasma YKL-40 levels on the outcome. This effect was amplified with the increased amount of alcohol consumption. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01840072.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...