Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 117(2): 332-341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985241

RESUMO

Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models. A remaining obstacle has been the limited in situ volume information of plastids and other cell organelles. To fill this gap for chloroplasts, we established three microscopy protocols delivering in situ volumes based on: (i) chlorophyll fluorescence emerging from the thylakoid membrane, (ii) a CFP marker embedded in the envelope, and (iii) calculations from serial block-face scanning electron microscopy (SBFSEM). The obtained data were corroborated by comparing wild-type data with two mutant lines affected in the plastid division machinery known to produce small and large mesophyll chloroplasts, respectively. Furthermore, we also determined the volume of the much smaller guard cell plastids. Interestingly, their volume is not governed by the same components of the division machinery which defines mesophyll plastid size. Based on our three approaches, the average volume of a mature Col-0 wild-type mesophyll chloroplasts is 93 µm3 . Wild-type guard cell plastids are approximately 18 µm3 . Lastly, our comparative analysis shows that the chlorophyll fluorescence analysis can accurately determine chloroplast volumes, providing an important tool to research groups without access to transgenic marker lines expressing genetically encoded fluorescence proteins or costly SBFSEM equipment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microscopia Eletrônica de Varredura , Plastídeos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Microscopia Confocal
2.
Nat Plants ; 9(6): 877-882, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188852

RESUMO

A micro-cantilever technique applied to individual leaf epidermis cells of intact Arabidopsis thaliana and Nicotiana tabacum synthesizing genetically encoded calcium indicators (R-GECO1 and GCaMP3) revealed that compressive forces induced local calcium peaks that preceded delayed, slowly moving calcium waves. Releasing the force evoked significantly faster calcium waves. Slow waves were also triggered by increased turgor and fast waves by turgor drops in pressure probe tests. The distinct characteristics of the wave types suggest different underlying mechanisms and an ability of plants to distinguish touch from letting go.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tato , Cálcio , Folhas de Planta
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834961

RESUMO

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Salinidade , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cloreto de Sódio/farmacologia , Transdução de Sinais/fisiologia
5.
Nat Rev Mol Cell Biol ; 23(10): 680-694, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35513717

RESUMO

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Brassinosteroides , Citocininas , Etilenos , Regulação da Expressão Gênica de Plantas , Giberelinas , Hormônios , Ácidos Indolacéticos , Plantas/genética , Estresse Fisiológico/fisiologia
6.
Methods Mol Biol ; 2462: 135-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152386

RESUMO

The phytohormone abscisic acid (ABA) regulates various aspects of plant physiology, growth, and development to maintain a balanced plant water status. Cellular ABA levels are regulated through the combined activities of biosynthesis, catabolism, and transport proteins and depend on the developmental stage, the cell-type and on environmental conditions. Genetically encoded Förster (fluorescence) Resonance Energy Transfer (FRET)-based ABA-responsive biosensors enable the direct monitoring of ABA dynamics in intact plants. Thus, ABA biosensor-based in vivo imaging can provide novel insights about the spatiotemporal patterns of biosynthesis- and transport-dependent ABA dynamics that are required for the regulation of seed dormancy and germination, root growth and hydrotropism, and stomatal closure under water limiting conditions. Here, I describe a protocol for the in vivo analysis of ABA in 5-day-old Arabidopsis seedlings (roots) expressing the FRET-based ABA biosensor ABAleonSD1-3L21.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biossensoriais , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/metabolismo
7.
Front Plant Sci ; 12: 798230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970294

RESUMO

Upon pathogen recognition, a transient rise in cytoplasmic calcium levels is one of the earliest events in plants and a prerequisite for defense initiation and signal propagation from a local site to systemic plant tissues. However, it is unclear if calcium signaling differs in the context of priming: Do plants exposed to a first pathogen stimulus and have consequently established systemic acquired resistance (SAR) display altered calcium responses to a second pathogen stimulus? Several calcium indicator systems including aequorin, YC3.6 or R-GECO1 have been used to document local calcium responses to the bacterial flg22 peptide but systemic calcium imaging within a single plant remains a technical challenge. Here, we report on an experimental approach to monitor flg22-induced calcium responses in systemic leaves of primed plants. The calcium-dependent protein kinase CPK5 is a key calcium sensor and regulator of the NADPH oxidase RBOHD and plays a role in the systemic calcium-ROS signal propagation. We therefore compared flg22-induced cytoplasmic calcium changes in Arabidopsis wild-type, cpk5 mutant and CPK5-overexpressing plants (exhibiting constitutive priming) by introgressing the calcium indicator R-GECO1-mTurquoise that allows internal normalization through mTurquoise fluorescence. Aequorin-based analyses were included for comparison. Based on the R-GECO1-mTurquoise data, CPK5-OE appears to reinforce an "oscillatory-like" Ca2+ signature in flg22-treated local tissues. However, no change was observed in the flg22-induced calcium response in the systemic tissues of plants that had been pre-challenged by a priming stimulus - neither in wild-type nor in cpk5 or CPK5-OE-lines. These data indicate that the mechanistic manifestation of a plant immune memory in distal plant parts required for enhanced pathogen resistance does not include changes in rapid calcium signaling upstream of CPK5 but rather relies on downstream defense responses.

8.
New Phytol ; 232(2): 468-475, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197630

RESUMO

Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants. There are important gaps in our understanding of the molecular VPD-sensing and signalling mechanisms in stomatal guard cells. Here, we discuss recent advances, research directions and open questions with respect to the three components that participate in VPD-induced stomatal closure in Arabidopsis, including: (1) abscisic acid (ABA)-dependent and (2) ABA-independent regulation of the protein kinase OPEN STOMATA 1 (OST1), and (3) the passive hydraulic stomatal response. In the ABA-dependent component, two models are proposed: ABA may be rapidly synthesised or its basal levels may be involved in the stomatal VPD response. Further studies on stomatal VPD signalling should clarify: (1) whether OST1 activation above basal activity is needed for VPD responses, (2) which components are involved in ABA-independent regulation of OST1, (3) the role of other potential OST1 targets in VPD signalling, and (4) to which extent OST1 contributes to stomatal VPD sensitivity in other plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Estômatos de Plantas , Pressão de Vapor
9.
Plant Physiol ; 187(2): 537-549, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35237819

RESUMO

Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes , Proteínas Luminescentes , Imagem Molecular/métodos , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Plantas/genética
10.
Curr Opin Plant Biol ; 57: 31-40, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32622326

RESUMO

Phytohormones enable plants to regulate their development, growth and physiology according to the environmental requirements. Knowledge about the underlying signaling mechanisms, combined with the ability to pharmacologically or genetically manipulate phytohormone responses is steadily being incorporated into modern plant biology research and agriculture. This knowledge also enabled the development of genetically encoded phytohormone indicators that allow the tracking of spatiotemporal phytohormone dynamics and signaling processes in vivo. This review aims to provide an overview about core phytohormone signaling mechanisms, and about genetic tools for the manipulation and in vivo tracking of phytohormone actions.


Assuntos
Reguladores de Crescimento de Plantas , Plantas , Plantas/genética , Transdução de Sinais/genética
11.
Plant Cell ; 32(8): 2582-2601, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471862

RESUMO

Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Corantes Fluorescentes/metabolismo , Sistemas do Segundo Mensageiro , Transcrição Gênica , Trifosfato de Adenosina/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Citosol/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/farmacologia , Dissulfeto de Glutationa/farmacologia , Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/farmacologia , Oxirredução , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transcrição Gênica/efeitos dos fármacos
12.
New Phytol ; 224(1): 177-187, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179540

RESUMO

During drought, abscisic acid (ABA) induces closure of stomata via a signaling pathway that involves the calcium (Ca2+ )-independent protein kinase OST1, as well as Ca2+ -dependent protein kinases. However, the interconnection between OST1 and Ca2+ signaling in ABA-induced stomatal closure has not been fully resolved. ABA-induced Ca2+ signals were monitored in intact Arabidopsis leaves, which express the ratiometric Ca2+ reporter R-GECO1-mTurquoise and the Ca2+ -dependent activation of S-type anion channels was recorded with intracellular double-barreled microelectrodes. ABA triggered Ca2+ signals that occurred during the initiation period, as well as in the acceleration phase of stomatal closure. However, a subset of stomata closed in the absence of Ca2+ signals. On average, stomata closed faster if Ca2+ signals were elicited during the ABA response. Loss of OST1 prevented ABA-induced stomatal closure and repressed Ca2+ signals, whereas elevation of the cytosolic Ca2+ concentration caused a rapid activation of SLAC1 and SLAH3 anion channels. Our data show that the majority of Ca2+ signals are evoked during the acceleration phase of stomatal closure, which is initiated by OST1. These Ca2+ signals are likely to activate Ca2+ -dependent protein kinases, which enhance the activity of S-type anion channels and boost stomatal closure.


Assuntos
Ácido Abscísico/farmacologia , Sinalização do Cálcio , Cálcio/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citosol/metabolismo , Estômatos de Plantas/efeitos dos fármacos
13.
Dev Cell ; 48(1): 87-99.e6, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30528785

RESUMO

Guard cells integrate various hormone signals and environmental cues to balance plant gas exchange and transpiration. The wounding-associated hormone jasmonic acid (JA) and the drought hormone abscisic acid (ABA) both trigger stomatal closure. In contrast to ABA however, the molecular mechanisms of JA-induced stomatal closure have remained largely elusive. Here, we identify a fast signaling pathway for JA targeting the K+ efflux channel GORK. Wounding triggers both local and systemic stomatal closure by activation of the JA signaling cascade followed by GORK phosphorylation and activation through CBL1-CIPK5 Ca2+ sensor-kinase complexes. GORK activation strictly depends on plasma membrane targeting and Ca2+ binding of CBL1-CIPK5 complexes. Accordingly, in gork, cbl1, and cipk5 mutants, JA-induced stomatal closure is specifically abolished. The ABA-coreceptor ABI2 counteracts CBL1-CIPK5-dependent GORK activation. Hence, JA-induced Ca2+ signaling in response to biotic stress converges with the ABA-mediated drought stress pathway to facilitate GORK-mediated stomatal closure upon wounding.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Potássio/metabolismo , Fosforilação , Estômatos de Plantas/citologia , Transdução de Sinais/fisiologia
14.
FEBS Lett ; 593(3): 339-351, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556127

RESUMO

Abscisic acid (ABA) regulates growth and developmental processes in response to limiting water conditions. ABA functions through a core signaling pathway consisting of PYR1/PYL/RCAR ABA receptors, type 2C protein phosphatases (PP2Cs), and SnRK2-type protein kinases. Other signaling modules might converge with ABA signals through the modulation of core ABA signaling components. We have investigated the role of the protein kinase WNK8 in ABA signaling. WNK8 interacted with PP2CA and PYR1, phosphorylated PYR1 in vitro, and was dephosphorylated by PP2CA. A hypermorphic wnk8-ct Arabidopsis mutant allele suppressed ABA and glucose hypersensitivities of pp2ca-1 mutants during young seedling development, and WNK8 expression in protoplasts suppressed ABA-induced reporter gene expression. We conclude that WNK8 functions as a negative modulator of ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Protoplastos/enzimologia , Nicotiana/genética , Nicotiana/metabolismo
15.
Plant Cell ; 30(12): 2973-2987, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538155

RESUMO

Plants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis (Arabidopsis thaliana). We uncovered that, in the guard cells, sulfate activates NADPH oxidases to produce reactive oxygen species (ROS) and that this ROS induction is essential for sulfate-induced stomata closure. In line with the function of ROS as the second-messenger of abscisic acid (ABA) signaling, sulfate does not induce ROS in the ABA-synthesis mutant, aba3-1, and sulfate-induced ROS were ineffective at closing stomata in the ABA-insensitive mutant abi2-1 and a SLOW ANION CHANNEL1 loss-of-function mutant. We provided direct evidence for sulfate-induced accumulation of ABA in the cytosol of guard cells by application of the ABAleon2.1 ABA sensor, the ABA signaling reporter ProRAB18:GFP, and quantification of endogenous ABA marker genes. In concordance with previous studies, showing that ABA DEFICIENT3 uses Cys as the substrate for activation of the ABSCISIC ALDEHYDE OXIDASE3 (AAO3) enzyme catalyzing the last step of ABA production, we demonstrated that assimilation of sulfate into Cys is necessary for sulfate-induced stomatal closure and that sulfate-feeding or Cys-feeding induces transcription of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, limiting the synthesis of the AAO3 substrate. Consequently, Cys synthesis-depleted mutants are sensitive to soil-drying due to enhanced water loss. Our data demonstrate that sulfate is incorporated into Cys and tunes ABA biosynthesis in leaves, promoting stomatal closure, and that this mechanism contributes to the physiological water limitation response.


Assuntos
Ácido Abscísico/metabolismo , Cisteína/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Sulfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xilema/metabolismo , Xilema/fisiologia
16.
Proc Natl Acad Sci U S A ; 115(42): E9971-E9980, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30282744

RESUMO

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2 These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Annu Rev Plant Biol ; 69: 497-524, 2018 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-29719164

RESUMO

Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Plantas/genética , Cálcio/metabolismo , Fluorescência , Oxirredução , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Cell ; 171(7): 1708-1708.e0, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245015

RESUMO

Abscisic acid is a key phytohormone produced in response to abiotic stress conditions and is an activator of abiotic stress resistance mechanisms and a regulator during diverse developmental stages in plants. This SnapShot explores how ABA signaling operates and coordinates resistance during stress responses and modulates plant development.


Assuntos
Ácido Abscísico/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
19.
New Phytol ; 216(1): 303-320, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28850185

RESUMO

Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Genes Reporter , Imageamento Tridimensional/métodos , Trifosfato de Adenosina/farmacologia , Calibragem , Indicadores e Reagentes , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/metabolismo
20.
PLoS Biol ; 14(5): e1002461, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27192441

RESUMO

The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by "monomeric" PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Compartimento Celular/efeitos dos fármacos , Epistasia Genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...