Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 19: 1549-1555, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30229027

RESUMO

In the last decades, much attention was given to mechanical alloying as it proved to be a cheap and easy way to produce (even metastable) nanostructured alloys. Especially Fe-Ni alloys have been studied intensely due to their technological and scientific importance. The MA process, however, is not fully understood. Furthermore, remanence properties of Fe80Ni20 are not well known. In our article "Monitoring the alloying process of mechanically synthesized Fe80Ni20through changes in magnetic properties (DOI: j.jallcom.2017.10.090, Volk et al., 2018) [1])" we investigated structural and magnetic properties of the intermediate and final alloys. Elemental Fe (99.5%) and Ni (99.7%) powders were filled in a 80 ml zirconia vials together with 3 mm zirconia milling balls and milled at 400 PRM with a planetary ball mill (Fritsch Pulverisette Premium 7). By subsampling the product at 14 different times during the process, the data presented here shows how crystalline structure (X-ray diffraction) and magnetic properties, induced as well as remanent, of the metastable Fe80Ni20 change during the mechanical synthesis.

2.
Sci Rep ; 8(1): 11363, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054530

RESUMO

That the human brain contains magnetite is well established; however, its spatial distribution in the brain has remained unknown. We present room temperature, remanent magnetization measurements on 822 specimens from seven dissected whole human brains in order to systematically map concentrations of magnetic remanence carriers. Median saturation remanent magnetizations from the cerebellum were approximately twice as high as those from the cerebral cortex in all seven cases (statistically significantly distinct, p = 0.016). Brain stems were over two times higher in magnetization on average than the cerebral cortex. The ventral (lowermost) horizontal layer of the cerebral cortex was consistently more magnetic than the average cerebral cortex in each of the seven studied cases. Although exceptions existed, the reproducible magnetization patterns lead us to conclude that magnetite is preferentially partitioned in the human brain, specifically in the cerebellum and brain stem.


Assuntos
Encéfalo/metabolismo , Magnetismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...