Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400374, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837881

RESUMO

The peripherical protons of the dye molecule hypericin can undergo structural interconversion (tautomerization) between different isomers separated by a low energy barrier with rates that depends sensitively on the interaction with local chemical environment defined by the nature of host material. We investigate the deuterium (D) isotope effect of hypericin tautomerism at the single-molecule level to avoid ensemble averaging in different polymer matrices by a combined spectroscopic and computational approach. In the 'innocent' PMMA matrix only intramolecular isotope effects on the internal conversion channel and tautomerization are observed; while PVA specifically interacts with the probe via H- and D-bonding. This establishes a single molecular picture on intra- and intermolecular nano-environment effects to control chromophore photophysics and -chemistry.

2.
Plants (Basel) ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771691

RESUMO

Photosynthesis is one the most important biological processes on earth, producing life-giving oxygen, and is the basis for a large variety of plant products. Measurable properties of photosynthesis provide information about its biophysical state, and in turn, the physiological conditions of a photoautotrophic organism. For instance, the chlorophyll fluorescence intensity of an intact photosystem is not constant as in the case of a single fluorescent dye in solution but shows temporal changes related to the quantum yield of the photosystem. Commercial photosystem analyzers already use the fluorescence kinetics characteristics of photosystems to infer the viability of organisms under investigation. Here, we provide a novel approach based on an optical Fabry-Pérot microcavity that enables the readout of photosynthetic properties and activity for an individual cyanobacterium. This approach offers a completely new dimension of information, which would normally be lost due to averaging in ensemble measurements obtained from a large population of bacteria.

3.
Plants (Basel) ; 11(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235497

RESUMO

Protein-protein interaction studies provide valuable insights into cellular signaling. Brassinosteroid (BR) signaling is initiated by the hormone-binding receptor Brassinosteroid Insensitive 1 (BRI1) and its co-receptor BRI1 Associated Kinase 1 (BAK1). BRI1 and BAK1 were shown to interact independently with the Receptor-Like Protein 44 (RLP44), which is implicated in BRI1/BAK1-dependent cell wall integrity perception. To demonstrate the proposed complex formation of BRI1, BAK1 and RLP44, we established three-fluorophore intensity-based spectral Förster resonance energy transfer (FRET) and FRET-fluorescence lifetime imaging microscopy (FLIM) for living plant cells. Our evidence indicates that RLP44, BRI1 and BAK1 form a ternary complex in a distinct plasma membrane nanodomain. In contrast, although the immune receptor Flagellin Sensing 2 (FLS2) also forms a heteromer with BAK1, the FLS2/BAK1 complexes are localized to other nanodomains. In conclusion, both three-fluorophore FRET approaches provide a feasible basis for studying the in vivo interaction and sub-compartmentalization of proteins in great detail.

4.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014328

RESUMO

Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.


Assuntos
Ouro , Nanopartículas , Ouro/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Análise Espectral Raman/métodos
5.
Anal Bioanal Chem ; 414(17): 4849-4860, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35538227

RESUMO

Glioblastoma WHO IV belongs to a group of brain tumors that are still incurable. A promising treatment approach applies photodynamic therapy (PDT) with hypericin as a photosensitizer. To generate a comprehensive understanding of the photosensitizer-tumor interactions, the first part of our study is focused on investigating the distribution and penetration behavior of hypericin in glioma cell spheroids by fluorescence microscopy. In the second part, fluorescence lifetime imaging microscopy (FLIM) was used to correlate fluorescence lifetime (FLT) changes of hypericin to environmental effects inside the spheroids. In this context, 3D tumor spheroids are an excellent model system since they consider 3D cell-cell interactions and the extracellular matrix is similar to tumors in vivo. Our analytical approach considers hypericin as probe molecule for FLIM and as photosensitizer for PDT at the same time, making it possible to directly draw conclusions of the state and location of the drug in a biological system. The knowledge of both state and location of hypericin makes a fundamental understanding of the impact of hypericin PDT in brain tumors possible. Following different incubation conditions, the hypericin distribution in peripheral and central cryosections of the spheroids were analyzed. Both fluorescence microscopy and FLIM revealed a hypericin gradient towards the spheroid core for short incubation periods or small concentrations. On the other hand, a homogeneous hypericin distribution is observed for long incubation times and high concentrations. Especially, the observed FLT change is crucial for the PDT efficiency, since the triplet yield, and hence the O2 activation, is directly proportional to the FLT. Based on the FLT increase inside spheroids, an incubation time > 30 min is required to achieve most suitable conditions for an effective PDT.


Assuntos
Neoplasias Encefálicas , Glioma , Perileno , Antracenos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Microscopia de Fluorescência , Perileno/análogos & derivados , Fármacos Fotossensibilizantes
6.
J Chem Phys ; 156(1): 014203, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998354

RESUMO

Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.


Assuntos
Antracenos/química , Perileno/análogos & derivados , Teoria da Densidade Funcional , Perileno/química , Prótons
7.
J Biophotonics ; 15(2): e202100136, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761529

RESUMO

The first step in photosynthesis is an extremely efficient energy transfer mechanism that led to the debate to which extent quantum coherence may be involved in the energy transfer between the photosynthetic pigments. In search of such a coherent behavior, we have embedded living cyanobacteria between the parallel mirrors of an optical microresonator irradiated with low intensity white light. As a consequence, we observe vacuum Rabi splitting in the transmission and fluorescence spectra as a result of strong light matter coupling of the chlorophyll a molecules in the photosystems (PSs) and the cavity modes. The Rabi-splitting scales with the number of the PSs chlorophyll a pigments involved in strong coupling indicating a delocalized polaritonic state. Our data provide evidence that a delocalized polaritonic state can be established between the chlorophyll a molecule of the PSs in living cyanobacterial cells at ambient conditions in a microcavity.


Assuntos
Cianobactérias , Luz , Clorofila A , Transferência de Energia , Fotossíntese
8.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616917

RESUMO

UV hyperspectral imaging (225 nm-410 nm) was used to identify and quantify the honeydew content of real cotton samples. Honeydew contamination causes losses of millions of dollars annually. This study presents the implementation and application of UV hyperspectral imaging as a non-destructive, high-resolution, and fast imaging modality. For this novel approach, a reference sample set, which consists of sugar and protein solutions that were adapted to honeydew, was set-up. In total, 21 samples with different amounts of added sugars/proteins were measured to calculate multivariate models at each pixel of a hyperspectral image to predict and classify the amount of sugar and honeydew. The principal component analysis models (PCA) enabled a general differentiation between different concentrations of sugar and honeydew. A partial least squares regression (PLS-R) model was built based on the cotton samples soaked in different sugar and protein concentrations. The result showed a reliable performance with R2cv = 0.80 and low RMSECV = 0.01 g for the validation. The PLS-R reference model was able to predict the honeydew content laterally resolved in grams on real cotton samples for each pixel with light, strong, and very strong honeydew contaminations. Therefore, inline UV hyperspectral imaging combined with chemometric models can be an effective tool in the future for the quality control of industrial processing of cotton fibers.


Assuntos
Imageamento Hiperespectral , Espectroscopia de Luz Próxima ao Infravermelho , Carboidratos , Análise dos Mínimos Quadrados , Açúcares
9.
Phys Chem Chem Phys ; 23(31): 16837-16846, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323915

RESUMO

Strong coupling between vibrational transitions and a vacuum field of a cavity mode leads to the formation of vibrational polaritons. These hybrid light-matter states have been widely explored because of their potential to control chemical reactivity. However, the possibility of altering Raman scattering through the formation of vibrational polaritons has been rarely reported. Here, we present the Raman scattering properties of different molecules under vibrational strong coupling conditions. The polariton states are clearly observed in the IR transmission spectra of the coupled system for benzonitrile and methyl salicylate in liquid phase and for polyvinyl acetate in a solid polymer film. However, none of the studied systems exhibits a signature of the polariton states in the Raman spectra. For the solid polymer film, we have used cavities with different layer structures to investigate the influence of vibrational strong coupling on the Raman spectra. The only scenario where alterations of the Raman spectra are observed is for a thin Ag layer being in direct contact with the polymer film. This shows that, even though the system is in the vibrational strong coupling regime, changes in the Raman spectra do not necessarily result from the strong coupling, but are caused by the surface enhancement effects.

10.
J Phys Chem Lett ; 12(3): 1025-1031, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470816

RESUMO

Tautomerization is a fundamental chemical reaction which involves the relocation of a proton in the reactants. Studying the optical properties of tautomeric species is challenging because of ensemble averaging. Many molecules, such as porphines, porphycenes, or phenanthroperylene quinones, exhibit a reorientation of the transition dipole moment (TDM) during tautomerization, which can be directly observed in single-molecule experiments. Here, we study single hypericin molecules, which is a prominent phenanthroperylene quinone showing antiviral, antidepressive, and photodynamical properties. Observing abrupt flipping of the image pattern combined with time-dependent density functional theory calculations allows drawing conclusions about the coexistence of four tautomers and their conversion path. This approach allows the unambiguous assignment of a TDM orientation to a specific tautomer and enables the determination of the chemical structure in situ. Our approach can be applied to other molecules showing TDM reorientation during tautomerization, helping to gain a deeper understanding of this important process.

11.
ACS Nano ; 15(1): 480-488, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33438432

RESUMO

CdSe nanocrystals and aggregates of an aryleneethynylene derivative are assembled into a hybrid thin film with dual fluorescence from both fluorophores. Under continuous excitation, the nanocrystals and the molecules exhibit anticorrelated fluorescence intensity variations, which become periodic at low temperature. We attribute this to a structure-dependent aggregation-induced emission of the aryleneethynylene derivative, which impacts the rate of excitation energy transfer between the molecules and nanocrystals. This work highlights that combining semiconductor nanocrystals with molecular aggregates, which exhibit aggregation-induced emission, can result in emerging optical properties.

12.
J Phys Chem B ; 124(27): 5709-5716, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32539407

RESUMO

The strong coupling of an IR-active molecular transition with an optical mode of the cavity results in vibrational polaritons, which opens a new way to control chemical reactivity via confined electromagnetic fields of the cavity. In this study, we design a voltage-tunable open microcavity and we show the formation of multiple vibrational polaritons in methyl salicylate. A Rabi splitting and polariton anticrossing behavior is observed when the cavity mode hybridizes with the C═O stretching vibration of methyl salicylate. Furthermore, the proposed theoretical model based on coupled harmonic oscillators reveals that the absorption of uncoupled molecules must also be considered to model the experimental spectra properly and that simultaneous coupling of multiple molecular vibrations to the same cavity mode has a significant influence on the transmission spectral profile.

13.
Opt Express ; 28(1): 485-493, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118974

RESUMO

Strong optical mode coupling between two adjacent λ/2 Fabry-Pérot microresonators consisting of three parallel silver mirrors is investigated experimentally and theoretically as a function of their detuning and coupling strength. Mode coupling can be precisely controlled by tuning the mirror spacing of one resonator with respect to the other by piezoelectric actuators. Mode splitting, anti-crossing and asymmetric modal damping are observed and theoretically discussed for the symmetric and antisymmetric supermodes of the coupled system. The spectral profile of the supermodes is obtained from the Fourier transform of the numerically calculated time evolution of the individual resonator modes, taking into account their resonance frequencies, damping and coupling constants, and is in excellent agreement with the experiments. Our microresonator design has potential applications for energy transfer between spatially separated quantum systems in micro optoelectronics and for the emerging field of polaritonic chemistry.

14.
J Phys Chem A ; 124(12): 2497-2504, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32126168

RESUMO

Hypericin is one of the most efficient photosensitizers used in photodynamic tumor therapy (PDT). The reported treatments of this drug reach from antidepressive, antineoplastic, antitumor and antiviral activity. We show that hypericin can be optically detected down to a single molecule at ambient conditions. Hypericin can even be observed inside of a cancer cell, which implies that this drug can be directly used for advanced microscopy techniques (PALM, spt-PALM, or FLIM). Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching, and blinking dynamics. Sudden spectral changes can be associated with a reorientation of the molecule on the particle surface. These properties of hypericin are very sensitive to the local environment. Comparison of DFT calculations with SERS spectra show that both the neutral and deprotonated form of hypericin can be observed on the single molecule and ensemble level.


Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/química , Antracenos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Fluorescência , Humanos , Microscopia de Fluorescência , Modelos Químicos , Perileno/química , Imagem Individual de Molécula , Análise Espectral Raman
15.
Anal Bioanal Chem ; 412(14): 3405-3411, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919613

RESUMO

Using the localized surface plasmon resonance (LSPR) of gold nanoparticles for sensing applications has attracted considerable interest, since it can be very sensitive, even down to a single molecule, and selective for a specific analyte molecule with a suitable surface modification. LSPR sensing is usually based on the wavelength shift of the LSPR or a Fano resonance. Here, we present a new experimental approach based on the phase of the light scattered by a single gold nanoparticle by equipping a confocal microscope with an additional interferometer arm similar to a Michelson interferometer. The detected phase depends on the shape of the nanoparticle and the refractive index of the surrounding medium and can even be detected for off-resonant excitation. This can be used as a new and sensitive detection method in LSPR sensing, allowing the detection of changes to the local refractive index or the binding of molecules to the nanoparticle surface.

16.
Nanoscale ; 12(2): 1083-1090, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31845942

RESUMO

In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope with a Michelson interferometer and scanning single nanoparticles through the focal volume while recording for each pixel interferograms of the scattered and a reference wave. For the experiments, lithographically prepared gold nanorods were used, since their plasmon resonances can be controlled via their aspect ratio. We have developed a theoretical model for image formation in confocal scattering microscopy for nanoparticles considerably smaller than the diffraction limited focus. We show that the phase shift observed for particles with different longitudinal particle plasmon resonances can be well explained by the harmonic oscillator model. The direct measurement of the phase shift can further improve the understanding of the elastic scattering of individual gold nanoparticles with respect to their plasmonic properties.

17.
J Chem Phys ; 151(14): 141102, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615264

RESUMO

CdSe quantum dots are functionalized with the organic dye iron ß-tetraaminophthalocyanine to reward a solution-processable hybrid material with two individually addressable optical resonances. We exploit this dual functionality during optical write/optical read patterning experiments and show that it is possible to simultaneously write complex optical patterns with positive and negative fluorescence contrast. This is enabled by a fluorescence enhancement under near-resonant excitation of the quantum dots in combination with a fluorescence bleaching during excitation of the singlet transition of the phthalocyanine. The presence of the organic dye not only enables negative optical patterning but also enhances the contrast during positive patterning. Furthermore, the patterning result is strongly dependent on the excitation wavelength during readout. Our results highlight the new possibilities that arise from combining inorganic quantum dots and organic π-systems into hybrid nanocomposites.

18.
J Phys Chem Lett ; 9(6): 1211-1215, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29470087

RESUMO

Double hydrogen transfer was monitored in single molecules of parent porphycene and its tetra- t-butyl derivative using confocal fluorescence microscopy. The molecules have been embedded in a polymer matrix. Under such conditions, a significant fraction of the population reveals a huge decrease of the tautomerization rate with respect to the value obtained from ensemble studies in solution. This effect is explained by a model that assumes that the rate is determined by the reorganization coordinate that involves slow relaxation of the polymer matrix. The model provides indirect evidence for the dominant role of tunneling. It is proposed that tautomerization in single molecules of the porphycene family can be used to probe polymer relaxation dynamics on the time scale ranging from picoseconds to minutes.

19.
Opt Lett ; 42(13): 2623-2626, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957300

RESUMO

Cylindrical vector beams with radial or azimuthal polarization have created great interest due to their unique focusing characteristics and focal components. In this Letter, we investigate second-harmonic general (SHG) of single CdSe nanowires (NWs) excited by tightly focused cylindrical vector beams of 150 fs pulses at 800 nm. With the specific polarizations in the focal region, we demonstrate a three-dimensional interaction between the focal electric field components and the NWs. The excitation anisotropy of the SHG can directly be derived from the imaging patterns with the cylindrical vector beams. The highest SHG excitation efficiency is observed when the polarization is parallel to the long axis of the NW, which is confirmed by the conventional linear polarization approach. Our work with cylindrical vector beams provides a new approach to study the nonlinear phenomenon of single semiconductor NWs in three dimensions and it could be applied to many other nanoscale systems.

20.
Anal Bioanal Chem ; 407(14): 4029-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25855152

RESUMO

In this paper, we explain in detail the wavelength dependence of the elastic scattering pattern of individual, optically isolated gold nanorods by using confocal microscopy in combination with higher order laser modes, i.e., radially/azimuthally polarized laser modes. We demonstrate that the spectral dependence of the scattering pattern is mostly caused by the relative strength of the gold nanorods' plasmonic modes at different wavelengths. Since the gold nanorods' plasmonic modes are determined by the particles' geometrical parameter, e.g., size and aspect ratio, as well as the refractive index of the surrounding medium, we show that the spectral dependence of the scattering pattern is a simple, not invasive way to determine, e.g., the gold nanorod aspect ratio or physical variation of the local environment. Thus, a further development of spectral imaging of gold nanorods can lead to the employment of this technique in biomedical assays involving also living samples.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral/métodos , Microscopia Confocal/métodos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...