Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(7): 4622-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26047255

RESUMO

We report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator. The latter removes the need for external charge sensors in quantum computing architectures and provides a compact way to readout the dispersive shift caused by changes in the quantum capacitance during inter-dot charge transitions. Here, we observe Pauli spin-blockade in the high-frequency response of the circuit at finite magnetic fields between singlet and triplet states. The blockade is lifted at higher magnetic fields when intra-dot triplet states become the ground state configuration. A line shape analysis of the dispersive phase shift reveals furthermore an intra-dot valley-orbit splitting Δvo of 145 µeV. Our results open up the possibility to operate compact complementary metal-oxide semiconductor (CMOS) technology as a singlet-triplet qubit and make split-gate silicon nanowire architectures an ideal candidate for the study of spin dynamics.

2.
J Phys Condens Matter ; 27(15): 154206, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25783566

RESUMO

We describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry. Single-charge transfer at zero bias (electron pumping) has been performed and the crossover between the adiabatic and non-adiabatic regimes is studied.

3.
Phys Rev Lett ; 110(13): 136802, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581354

RESUMO

We report on microwave-driven coherent electron transfer between two coupled donors embedded in a silicon nanowire. By increasing the microwave frequency we observe a transition from incoherent to coherent driving revealed by the emergence of a Landau-Zener-Stückelberg quantum interference pattern of the measured current through the donors. This interference pattern is fitted to extract characteristic parameters of the double-donor system. In particular we estimate a charge dephasing time of 0.3±0.1 ns, comparable to other types of charge-based two-level systems. The demonstrated coherent coupling between two dopants is an important step towards donor-based quantum computing devices in silicon.

4.
Nat Commun ; 4: 1581, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23481389

RESUMO

With the development of single-atom transistors, consisting of single dopants, nanofabrication has reached an extreme level of miniaturization. Promising functionalities for future nanoelectronic devices are based on the possibility of coupling several of these dopants to each other. This already allowed to perform spectroscopy of the donor state by d.c. electrical transport. The next step, namely manipulating a single electron over two dopants, remains a challenge. Here we demonstrate electron pumping through two phosphorus donors in series implanted in a silicon nanowire. While quantized pumping is achieved in the low-frequency adiabatic regime, we observe remarkable features at higher frequency when the charge transfer is limited either by the tunnelling rates to the electrodes or between the two donors. The transitions between quantum states are modelled involving a Landau-Zener transition, allowing to reproduce in detail the characteristic signatures observed in the non-adiabatic regime.

5.
Phys Rev Lett ; 108(20): 206812, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003174

RESUMO

We measure a large valley-orbit splitting for shallow isolated phosphorus donors in a silicon gated nanowire. This splitting is close to the bulk value and well above previous reports in silicon nanostructures. It was determined using a double dopant transport spectroscopy which eliminates artifacts induced by the environment. Quantitative simulations taking into account the position of the donors with respect to the Si/SiO2 interface and electric field in the wire show that the values found are consistent with the device geometry.

6.
Nat Nanotechnol ; 5(2): 133-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19966793

RESUMO

One consequence of the continued downward scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations in the number of these dopants are already a major issue in the microelectronics industry. Although single dopant signatures have been observed at low temperatures, the impact on transistor performance of a single dopant atom at room temperature is not well understood. Here, we show that a single arsenic dopant atom dramatically affects the off-state room-temperature behaviour of a short-channel field-effect transistor fabricated with standard microelectronics processes. The ionization energy of the dopant is measured to be much larger than it is in bulk, due to its proximity to the buried oxide, and this explains the large current below threshold and large variability in ultra-scaled transistors. The results also suggest a path to incorporating quantum functionalities into silicon CMOS devices through manipulation of single donor orbitals.


Assuntos
Eletroquímica/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Simulação por Computador , Cristalização , Eletroquímica/instrumentação , Eletrônica/instrumentação , Tamanho da Partícula , Silício/química , Propriedades de Superfície , Temperatura , Termodinâmica , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...