RESUMO
High dietary energy density (ED) has been associated with weight gain. However, little is known about the long-term effects of ED on weight changes among free-living subjects, particularly in Japanese and other Asian populations. In this study, we assessed dietary habits and weight changes in participants (5778 males and 7440 females, 35-69 years old) of the Takayama study. ED was estimated using a validated FFQ at baseline only. Information on body weight (BW) was obtained by self-administered questionnaires at baseline and follow-up. Mean BW difference in 9·8 years was 17 (se 4221) g for men and -210 (se 3889) g for women. In men, ED was positively associated with BW at follow-up after controlling for age, BW, height, physical activity score, alcohol consumption, energy intake, years of education at the baseline and change of smoking status during the follow-up. On average, men in the highest quartile of ED (>5·322 kJ/g (>1·272 kcal/g)) gained 138 (se 111) g, whereas men in the lowest ED (<1·057) lost 22 (se 111) g (P for trend=0·01). The association between ED and BW gain was stronger in men with normal weight. In women, the association between ED and weight change was not statistically significant. In conclusion, contrary to some studies that report an association between ED and weight gain in the overweight only, our data suggest that high-ED diets may be associated with weight gain in the lean population as well, at least in male subjects.
Assuntos
Ingestão de Energia , Comportamento Alimentar , Obesidade , Aumento de Peso , Adulto , Fatores Etários , Peso Corporal , Dieta , Inquéritos sobre Dietas , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Estudos Prospectivos , Valores de ReferênciaRESUMO
The Ezo red fox (Vulpes vulpes schrencki), a subspecies endemic to Hokkaido island, Japan, is a known host species for the tapeworm Echinococcus multilocularis. To develop tools for molecular ecological studies, we isolated 28 microsatellite regions from the genome of Ezo red fox, and developed 18 polymorphic microsatellite markers. These markers were characterized using 7 individuals and 22 fecal samples of the Ezo red fox. The number of alleles for these markers ranged from 1 to 7, and the observed heterozygosity, estimated on the basis of the genotypes of 7 individuals, ranged from 0.29 to 1.00. All markers, except DvNok5, were in Hardy-Weinberg equilibrium (P > 0.05), and no linkage disequilibrium was detected among these loci, except between DvNok14 and DvNok28 (P = 0.01). Moreover, six microsatellite loci were successfully genotyped using feces-derived DNA from the Ezo red fox. The markers developed in our study might serve as a useful tool for molecular ecological studies of the Ezo red fox.
Assuntos
Raposas/genética , Técnicas de Genotipagem/métodos , Repetições de Microssatélites , Animais , Fezes/química , Marcadores Genéticos/genética , HeterozigotoRESUMO
The level of thyrotropin (TSH) secretion is determined by the balance of TSH-releasing hormone (TRH) and thyroid hormones. However, neuromedin B (NB), a bombesin-like peptide, highly concentrated in the pituitary, has been postulated to be a tonic inhibitor of TSH secretion. We studied the pituitary-thyroid axis in adult male mice lacking NB receptor (NBR-KO) and their wild-type (WT) littermates. At basal state, NBR-KO mice presented serum TSH slightly higher than WT (18%, P< 0.05), normal intra-pituitary TSH content, and no significant changes in alpha and beta TSH mRNA levels. Serum thyroxine was normal but serum triiodothyronine (T3) was reduced by 24% (P< 0.01) in NBR-KO mice. Pituitaries of NBR-KO mice exhibited no alteration in prolactin mRNA expression but type I and II deiodinase mRNA levels were reduced by 53 and 42% respectively (P< 0.05), while TRH receptor mRNA levels were importantly increased (78%, P< 0.05). The TSH-releasing effect of TRH was significantly higher in NBR-KO than in WT mice (7.1-and 4.0-fold respectively), but, while WT mice presented a 27% increase in serum T3 (P< 0.05) after TRH, NBR-KO mice showed no change in serum T3 after TRH. NBR-KO mice did not respond to exogenous NB, while WT showed a 30% reduction in serum TSH. No compensatory changes in mRNA expression of NB or other bombesin-related peptides and receptors (gastrin-releasing peptide (GRP), GRP-receptor and bombesin receptor subtype-3) were found in the pituitary of NBR-KO mice. Therefore, the data suggest that NB receptor pathways are importantly involved in thyrotroph gene regulation and function, leading to a state where TSH release is facilitated especially in response to TRH, but probably with a less-bioactive TSH. Therefore, the study highlights the important role of NB as a physiological regulator of pituitary-thyroid axis function and gene expression.