Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198910

RESUMO

Changes in structural and functional neuroplasticity have been implicated in various neurological disorders. Sterol regulatory element-binding protein (SREBP)-1c is a critical regulatory molecule of lipid homeostasis in the brain. Recently, our findings have shown the potential involvement of SREBP-1c deficiency in the alteration of novel modulatory molecules in the hippocampus and occurrence of schizophrenia-like behaviors in mice. However, the possible underlying mechanisms, related to neuronal plasticity in the hippocampus, are yet to be elucidated. In this study, we investigated the hippocampus-dependent memory function and neuronal architecture of hippocampal neurons in SREBP-1c knockout (KO) mice. During the passive avoidance test, SREBP-1c KO mice showed memory impairment. Based on Golgi staining, the dendritic complexity, length, and branch points were significantly decreased in the apical cornu ammonis (CA) 1, CA3, and dentate gyrus (DG) subregions of the hippocampi of SREBP-1c KO mice, compared with those of wild-type (WT) mice. Additionally, significant decreases in the dendritic diameters were detected in the CA3 and DG subregions, and spine density was also significantly decreased in the apical CA3 subregion of the hippocampi of KO mice, compared with that of WT mice. Alterations in the proportions of stubby and thin-shaped dendritic spines were observed in the apical subcompartments of CA1 and CA3 in the hippocampi of KO mice. Furthermore, the corresponding differential decreases in the levels of SREBP-1 expression in the hippocampal subregions (particularly, a significant decrease in the level in the CA3) were detected by immunofluorescence. This study suggests that the contributions of SREBP-1c to the structural plasticity of the mouse hippocampus may have underlain the behavioral alterations. These findings offer insights into the critical role of SREBP-1c in hippocampal functioning in mice.


Assuntos
Espinhas Dendríticas/genética , Memória/fisiologia , Neurônios/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/patologia , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência
4.
J Integr Neurosci ; 20(2): 307-320, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258929

RESUMO

We evaluated the practicability of using the rarely utilized C57BL/6N mouse as a Parkinson's disease model established via the acute MPTP/probenecid (MPTP/p) protocol. We confirmed dopaminergic degeneration in terms of decreased expression levels of tyrosine hydroxylase in the substantia nigra and striatum of MPTP/p-lesioned mice. In addition, acute MPTP/p-lesioned mice demonstrated initial motor dysfunctions followed by spontaneous recovery. Interestingly, these MPTP/p-lesioned mice exhibited anxiolytic and antidepressive behaviors upon recovery from these motor deficits. Additionally, increased expression of norepinephrine transporters in several brain regions, including the hippocampus, medial prefrontal cortex, and striatum, and an elevated rate of adult neurogenesis (in terms of increased numbers of doublecortin-positive neuroblasts) in the hippocampus were observed after recovery from motor dysfunctions. We suggest that the emotional alterations observed under these experimental conditions may be associated with enhanced adult neurogenesis, increased levels of norepinephrine transporters, and/or a possible interplay between these two factors. Consequently, this acute MPTP/p model adequately satisfies the criteria for the validity of a Parkinson's disease model regarding dopaminergic loss and motor impairment. However, the non-motor findings may offer novel evidence against the practicability of utilizing the acute MPTP/p-lesioned mice for modeling the emotional aberrations found in Parkinson's disease patients.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopaminérgicos/farmacologia , Neurogênese/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
5.
Brain Sci ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201837

RESUMO

Among the animal models of Parkinson's disease (PD), the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model has shown both dopaminergic (DA) damage and related motor control defects, as observed in patients with PD. Recent studies have suggested that the DA system interacts with the synaptic plasticity of the hippocampus in PD. However, little is known about how alterations in the hippocampal structural plasticity are affected by the DA damage in MPTP-lesioned models. In the present study, we investigated alterations in dendritic complexity and spine density in the mouse hippocampus following acute MPTP treatment (22 mg/kg, intraperitoneally, four times/day, 2-h intervals). We confirmed that acute MPTP treatment significantly decreased initial motor function and persistently reduced the number of tyrosine hydroxylase-positive DA neurons in the substantia nigra. Golgi staining showed that acute MPTP treatment significantly reduced the spine density of neuronal dendrites in the cornu ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions of the mouse hippocampus at 8 and 16 days after treatment, although it did not affect dendritic complexity (e.g., number of crossing dendrites, total dendritic length, and branch points per neuron) in both CA1 and DG subregions at all time points after treatment. Therefore, the present study provides anatomical evidence that acute MPTP treatment affects synaptic structure in the hippocampus during the late phase after acute MPTP treatment in mice, independent of any changes in the dendritic arborization of hippocampal neurons. These findings offer data for the ability of the acute MPTP-lesioned mouse model to replicate the non-nigrostriatal lesions of clinical PD.

6.
Pharmacol Res ; 66(3): 226-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699012

RESUMO

Serotonin (5-HT) exerts multiple physiological functions not only in the central and peripheral nervous systems but also in the gastrointestinal tract, and these multiple functions are accounted for by a variety of 5-HT receptor subtypes. We investigated the role of 5-HT in the pathogenesis of indomethacin-induced intestinal lesions in mice, in relation to 5-HT receptor subtypes. A single oral administration of indomethacin (10 mg/kg) provoked damage in the small intestine of mice 24 h later, and this response was prevented by pretreatment with p-chlorophenylalanine (a 5-HT synthesis inhibitor). The administration of 5-HT3 receptor antagonists, such as ondansetron and ramosetron, dose-dependently reduced the severity of the intestinal lesions, whereas a high dose of GR113808 (a 5-HT4 receptor antagonist) significantly aggravated these lesions. In contrast, NAN-190 (a 5-HT1 receptor antagonist), ketanserin (a 5-HT2 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effect on these lesions. Mosapride (a 5-HT4 receptor agonist) significantly reduced the severity of indomethacin-induced intestinal lesions, and this protective effect was totally prevented by either GR113808 or methyllycaconitine (an α7-nicotinic acetylcholine receptor antagonist). Indomethacin increased the activity of myeloperoxidase and the expression of inducible nitric oxide synthase, inflammatory cytokines, and chemokines in the small intestine; these responses were significantly attenuated by ondansetron and mosapride. These findings suggest that endogenous 5-HT exerts a dual role in the pathogenesis of indomethacin-induced intestinal lesions: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors, and the latter effect via 5-HT4 receptors may be mediated by activation of α7-nicotinic acetylcholine receptors.


Assuntos
Enteropatias/metabolismo , Intestino Delgado/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Serotonina/metabolismo , Úlcera/patologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Antiulcerosos/farmacologia , Benzamidas/farmacologia , Fenclonina/farmacologia , Indóis/farmacologia , Indometacina , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Enteropatias/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Ondansetron/farmacologia , Receptores Nicotínicos/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sulfonamidas/farmacologia , Úlcera/induzido quimicamente , Úlcera/tratamento farmacológico , Úlcera/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...