Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 26(6): 1475-86, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17332754

RESUMO

Alcadeinalpha (Alcalpha) is an evolutionarily conserved type I membrane protein expressed in neurons. We show here that Alcalpha strongly associates with kinesin light chain (K(D) approximately 4-8x10(-9) M) through a novel tryptophan- and aspartic acid-containing sequence. Alcalpha can induce kinesin-1 association with vesicles and functions as a novel cargo in axonal anterograde transport. JNK-interacting protein 1 (JIP1), an adaptor protein for kinesin-1, perturbs the transport of Alcalpha, and the kinesin-1 motor complex dissociates from Alcalpha-containing vesicles in a JIP1 concentration-dependent manner. Alcalpha-containing vesicles were transported with a velocity different from that of amyloid beta-protein precursor (APP)-containing vesicles, which are transported by the same kinesin-1 motor. Alcalpha- and APP-containing vesicles comprised mostly separate populations in axons in vivo. Interactions of Alcalpha with kinesin-1 blocked transport of APP-containing vesicles and increased beta-amyloid generation. Inappropriate interactions of Alc- and APP-containing vesicles with kinesin-1 may promote aberrant APP metabolism in Alzheimer's disease.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Motores Moleculares/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Western Blotting , Drosophila , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , Vesículas Transportadoras/fisiologia
2.
Brain Res Mol Brain Res ; 130(1-2): 23-9, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15519673

RESUMO

The regulatory mechanisms leading to IL-20 expression during infection have not been elucidated. In the present study, we found that bacterial lipopolysaccharide (LPS) induced IL-20 expression in the primary cultured glial cells and RAW264.7 macrophage cell line. Pretreatment with protein synthesis inhibitor puromycin or cycloheximide failed to inhibit the expression of IL-20, suggesting that the expression was not dependent on de novo protein synthesis. Myeloid differentiation factor 88 (MyD88) is an important adaptor molecule for Toll-like receptor signaling. We observed complete inhibition of LPS-induced expression of IL-20 in the primary cultured glial cells prepared from MyD88-deficient mice. Furthermore, a p38 MAP kinase inhibitor, SB203580, inhibited LPS-induced expression of IL-20 mRNA. LPS-induced p38 MAP kinase phosphorylation was delayed in MyD88-deficient glial cells. Therefore, it is suggested that LPS induces IL-20 expression through MyD88-p38-dependent mechanisms. As dexamethasone inhibited LPS-induced IL-20 expression, the expression of IL-20 is regulated by a negative feedback loop mediated through glucocorticoids. Therefore, it is suggested that IL-20 may play a crucial role in inflammatory conditions in the brain.


Assuntos
Encéfalo/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Neuroglia/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/fisiologia , Western Blotting/métodos , Células Cultivadas , Cicloeximida/farmacologia , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Glucocorticoides/farmacologia , Imidazóis/farmacologia , Interleucinas/genética , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Neuroglia/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , Piridinas/farmacologia , RNA Mensageiro/biossíntese , Receptores Imunológicos/deficiência , Receptores Imunológicos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Biol Chem ; 279(23): 24343-54, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15037614

RESUMO

The Alcadeins (Alcs)/calsyntenins and the amyloid beta-protein precursor (APP) associate with each other in the brain by binding via their cytoplasmic domains to X11L (the X11-like protein). We previously reported that the formation of this APP-X11L-Alc tripartite complex suppresses the metabolic cleavages of APP. We show here that the metabolism of the Alcs markedly resembles that of APP. The Alcs are subjected to a primary cleavage event that releases their extracellular domain. Alcs then undergo a secondary presenilin-dependent gamma-cleavage that leads to the secretion of the amyloid beta-protein-like peptide and the liberation of an intracellular domain fragment (AlcICD). However, when Alc is in the tripartite complex, it escapes from these cleavages, as does APP. We also found that AlcICD suppressed the FE65-dependent gene transactivation activity of the APP intracellular domain fragment, probably because AlcICD competes with the APP intracellular domain fragment for binding to FE65. We propose that the Alcs and APP are coordinately metabolized in neurons and that their cleaved cytoplasmic fragments are reciprocally involved in the regulation of FE65-dependent gene transactivation. Any imbalance in the metabolism of Alcs and APP may influence the FE65-dependent gene transactivation, which together with increased secretion of amyloid beta-protein may contribute to neural disorders.


Assuntos
Precursor de Proteína beta-Amiloide/química , Regulação da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ativação Transcricional , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases , Western Blotting , Encéfalo/metabolismo , Linhagem Celular , Meios de Cultura/metabolismo , Citoplasma/metabolismo , DNA Complementar/metabolismo , Regulação para Baixo , Endopeptidases/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , Neurônios/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transfecção
4.
Brain Res ; 969(1-2): 95-101, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12676369

RESUMO

Leptin is an important circulating signal for the regulation of food intake and body weight. Glucocorticoids were suggested to play a physiological role in the feedback inhibition of immune/inflammatory responses. In the present study, we examined whether these neuroendocrine effects of glucocorticoids are linked to changes in the leptin-induced expression of IL-1beta and STAT3 activation in the brain. Intravenous injection of leptin induced IL-1beta expression in the hypothalamus. Pretreatment with dexamethasone dose dependently inhibited leptin-induced IL-1beta expression in the hypothalamus. Moreover, dexamethasone inhibited leptin-induced IL-1beta expression in the primary cultured glial cells. In contrast, pretreatment with dexamethasone did not inhibit leptin-induced STAT3 phosphorylation in the hypothalamus. These effects of dexamethasone may not be due to the change in the expression level of the leptin receptor Ob-Ra and Ob-Rb isoforms. Therefore, it is suggested that glucocorticoid negatively regulates leptin-induced IL-1beta expression in the brain.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Comportamento Alimentar/fisiologia , Hipotálamo/efeitos dos fármacos , Interleucina-1/biossíntese , Animais , Células Cultivadas , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Hipotálamo/fisiologia , Leptina/farmacologia , Camundongos , Neuroglia/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/efeitos dos fármacos , Receptores para Leptina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3 , Transativadores/efeitos dos fármacos , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...